参考文献/References:
[1] Yang J, Li L, Zhao K, et al. A Comparative Study of Typhoon Hato (2017) and Typhoon Mangkhut (2018)-Their Impacts on Coastal Inundation in Macau[J]. Journal of Geophysical Research-Oceans, 2019,124(12):9590-9619.
[2] 中国水产频道. "风王"山竹2018年以来体积最大的台风!直径达1000公里以上,可把广东、海南全装进去[EB/OL]. http://www.fishfirst.cn/article.phpaid=105485.
[3] Hong Y, Hsu K-L, Sorooshian S, et al. Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system[J]. Journal of Applied Meteorology, 2004, 43(12):1834-1853.
[4] Joyce R J, Janowiak J E, Arkin P A, et al. CMORPH:A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution[J]. Journal of hydrometeorology, 2004, 5(3):487-503.
[5] Huffman G J, Bolvin D T, Nelkin E J, et al. The TRMM multisatellite precipitation analysis (TMPA):Quasi-global,multiyear, combined-sensor precipitation estimates at fine scales[J]. Journal of hydrometeorology, 2007, 8(1):38-55.
[6] Anjum M N, Ding Y, Shangguan D, et al. Performance evaluation of latest integrated multi-satellite retrievals for Global Precipitation Measurement (IMERG) over the northern highlands of Pakistan[J]. Atmospheric Research, 2018, 205:134-146.
[7] Liu Z. Comparison of integrated multisatellite retrievals for GPM (IMERG) and TRMM multisatellite precipitation analysis (TMPA) monthly precipitation products:initial results[J]. Journal of Hydrometeorology, 2016, 17(3):777-790.
[8] Chen F, Li X. Evaluation of IMERG and TRMM 3B43 monthly precipitation products over mainland China[J]. Remote Sensing, 2016, 8(6):472.
[9] Tang G, Ma Y, Long D, et al. Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over Mainland China at multiple spatiotemporal scales[J]. Journal of hydrology, 2016, 533:152-167.
[10] Chen S, Hong Y, Cao Q, et al. Performance evaluation of radar and satellite rainfalls for Typhoon Morakot over Taiwan:Are remote-sensing products ready for gauge denial scenario of extreme events?[J]. Journal of Hydrology, 2013, 506:4-13.
[11] Omranian E, Sharif H O, Tavakoly A A. How well can global precipitation measurement (GPM) capture hurricanes? case study:Hurricane Harvey[J]. Remote Sensing, 2018, 10(7):1150.
[12] Huang C, Hu J, Chen S, et al. How Well Can IMERG Products Capture Typhoon Extreme Precipitation Events over Southern China?[J]. Remote Sensing, 2019,11(1):70.
[13] Sungmin O, Foelsche U, Kirchengast G, et al. Evaluation of GPM IMERG Early, Late, and Final rainfall estimates using WegenerNet gauge data in southeastern Austria[J]. Hydrology Earth System Sciences, 2017, 21(12).
[14] Guo H, Chen S, Bao A, et al. Comprehensive Evaluation of High-Resolution Satellite-Based Precipitation Products over China[J]. Atmosphere, 2015, 7(1):6.
[15] Chen S, Yang H, Cao Q, et al. Similarity and Difference of the Two Successive V6 and V7 TRMM Multi satellite Precipitation Analysis Performance over China[J]. Journal of Geophysical Research-atmospheres, 2013, 118(23):13060-13074.
[16] 巢清尘, 巢纪平. 影响中国及关键经济区热带气旋降水的气候趋势及极端性特征[J]. 大气科学学报, 2014(6):1029-1040.
[17] Shen Y, Zhao P, Pan Y, et al. A high spatiotemporal gauge-satellite merged precipitation analysis over China[J]. Journal of Geophysical Research:Atmospheres, 2014, 119(6):3063-3075.
[18] Huffman G J, Bolvin D T, Nelkin E J, et al. Integrated Multi-satellite Retrievals for GPM (IMERG) Technical Documentation[G]. NASA/GSFC, 2019:1-55.
[19] 肖柳斯, 张阿思, 闵超, 等. GPM卫星降水产品在台风极端降水过程的误差评估[J]. 高原气象, 2019, 38(5):993-1003.
[20] Zhang A, Xiao L, Min C, et al. Evaluation of latest GPM-Era high-resolution satellite precipitation products during the May 2017 Guangdong extreme rainfall event[J]. Atmospheric Research, 2019, 216:76-85.
[21] 中国天气网.专家解读台风山竹并非登陆广东最强台风[EB/OL].http://news.weather.com.cn/2018/09/2937054.shtml.
[22] Chen S, Hu J, Zhang A, et al. Performance of near real-time Global Satellite Mapping of Precipitation estimates during heavy precipitation events over northern China[J]. Theoretical Applied Climatology, 2018, 135(3-4):877-891.
[23] 王佳津, 陈朝平, 龙柯吉, 等. 四川区域暴雨过程中短时强降水时空分布特征[J]. 高原山地气象研究, 2015, 35(1):16-20.
[24] 陈汉清, 鹿德凯, 周泽慧, 等. GPM降水产品评估研究综述[J]. 水资源保护, 2019, 35(1):27-34.
相似文献/References:
[1]林宗桂,林 墨,林开平,等.一类降水过程多尺度天气系统结构特征[J].气象研究与应用,2014,35(03):1.
[2]谭敏玲,何如,罗红磊.近55年广西融水县降水气候特征分析[J].气象研究与应用,2014,35(03):27.
[3]陈锐,曹树荣,陆金凤,等.降水对接地电阻的影响[J].气象研究与应用,2014,35(04):117.
[4]陈伟斌,韩慎友,刘国忠.欧洲集合预报产品降水预报检验分析[J].气象研究与应用,2017,38(02):6.
Chen Weibin,Han Shenyou,Liu Guozhong.Analysis on ensemble prediction products of the rainfall forecast verification[J].Journal of Meteorological Research and Application,2017,38(03):6.
[5]周慧僚,罗凤荣,莫惠晴.天峨县近30a降水与气温的气候特征分析[J].气象研究与应用,2017,38(02):38.
Zhou Huiliao,Luo Fengrong,Mo Hui qing.Analysis on climatic characteristics of precipitation and temperature past 30a in Tiane[J].Journal of Meteorological Research and Application,2017,38(03):38.
[6]李妍君,陈耀登.台风“凡亚比”的诊断分析和数值模拟研究[J].气象研究与应用,2017,38(03):1.
Li Yan-jun,Chen Yao-deng.Typhoon “Fanapi” diagnostic analysis and numerical simulation research[J].Journal of Meteorological Research and Application,2017,38(03):1.
[7]陆虹,覃卫坚,李艳兰,等.近40年广西石漠化地区气候变化特征分析[J].气象研究与应用,2015,36(01):6.
LU Hong,QIN Weijian,LI Yanlan,et al.Analysis on Climate Variation Characteristics of Rocky Desertification Region of Guangxi in Recent 40 years[J].Journal of Meteorological Research and Application,2015,36(03):6.
[8]符晓虹,郑育群,羊清雯.天气系统与海南降水的关系研究[J].气象研究与应用,2015,36(01):10.
Fu Xiaohong,Zheng Yuqun,Yang Qingwen.Relationship between the precipitation and weather systems in Hainan[J].Journal of Meteorological Research and Application,2015,36(03):10.
[9]陆甲,廖雪萍,李耀先.广西农业旱灾对气温降水的响应特征[J].气象研究与应用,2015,36(02):66.
Lu Jia,Liao Xue-ping,Li Yao-xian.The Characteristics of the Agricultural Drought Response to precipitation and temperature in Guangxi[J].Journal of Meteorological Research and Application,2015,36(03):66.
[10]高宪权,莫丽霞.气候变化背景下桂东地区旱涝变化特征分析[J].气象研究与应用,2018,39(01):18.
Gao Xianquan,Mo Lixia.Analysis of drought and flood characteristics of eastern Guangxi under the background of climate change[J].Journal of Meteorological Research and Application,2018,39(03):18.