[1]金龙,黄颖,姚才,等.人工智能技术的热带气旋预报综述(之二)——流形学习、智能计算及深度学习的热带气旋预报方法[J].气象研究与应用,2020,41(04):5-12.[doi:10.19849/j.cnki.CN45-1356/P.2020.4.02]
 Jin Long,Huang Ying,Yao Cai,et al.Summary of tropical cyclone forecasting based on artificial intelligence technology (part 2)——tropical cyclone forecasting methods based on manifold learning, intelligent calculation and deep learning[J].Journal of Meteorological Research and Application,2020,41(04):5-12.[doi:10.19849/j.cnki.CN45-1356/P.2020.4.02]
点击复制

人工智能技术的热带气旋预报综述(之二)——流形学习、智能计算及深度学习的热带气旋预报方法()
分享到:

气象研究与应用[ISSN:1673-8411/CN:45-1356/P]

卷:
第41卷
期数:
2020年04期
页码:
5-12
栏目:
广西气象学会成立60周年纪念专刊
出版日期:
2020-12-31

文章信息/Info

Title:
Summary of tropical cyclone forecasting based on artificial intelligence technology (part 2)——tropical cyclone forecasting methods based on manifold learning, intelligent calculation and deep learning
作者:
金龙1 黄颖2 姚才1 黄小燕2 赵华生2
1. 广西壮族自治区气候中心, 南宁 530022;
2. 广西壮族自治区气象科学研究所, 南宁 530022
Author(s):
Jin Long1 Huang Ying2 Yao Cai1 Huang Xiaoyan2 Zhao Huasheng2
1. Guangxi Climate Center, Nanning Guangxi 530022;
2. Guangxi Institute of Meteorological Sciences, Nanning Guangxi 530022
关键词:
热带气旋智能计算流形学习数据挖掘深度学习
Keywords:
tropical cycloneintelligent computingmanifold learningdata miningdeep learning
分类号:
P456
DOI:
10.19849/j.cnki.CN45-1356/P.2020.4.02
摘要:
继"人工智能技术的热带气旋预报综述(之一)"有关BP神经网络和集成方法的热带气旋预报研究和业务应用进行详细综述后,本文将进一步综述流形学习方法在热带气旋预报因子数据挖掘中的应用,以及各种智能计算模型,包括粒子群算法、模糊算法、概率算法,及深度学习方法在热带气旋预报中的应用研究成果,并对今后气象领域的人工智能发展进行初步设想探讨,以期能为有效提高人工智能方法的气象灾害预报能力提供有益参考。
Abstract:
Following a detailed review of tropical cyclone forecasting research and operational applications of BP neural network and integrated methods in "Review of Tropical Cyclone Forecast Based on Artificial Intelligence Technology (Part 1)", this article further reviewed the application of manifold learning methods in data mining of tropical cyclone predictors. Besides, the applications of various intelligent computing models, including particle swarm algorithm, fuzzy algorithm, probability algorithm, and deep learning methods in tropical cyclone forecasting were also discussed. A preliminary discussion on the development of artificial intelligence in the field of meteorology in the future is expected to provide a useful reference for effectively improving the ability of artificial intelligence to forecast meteorological disasters.

参考文献/References:

[1] 李程怡. 人工智能的关键技术及相关应用[J]. 科技创新与应用. 2020(12):156-157,160.
[2] 朱玲,吴心玥.人工智能在气象领域的应用述评[J]. 广东气象,2019,41(1):35-39.
[3] 张韧, 蒋国荣,余志豪,等. 利用神经网络计算方法建立太平洋副高活动的预报模型[J]. 应用气象学报,2000,11(4):474-483.
[4] 金龙. 神经网络气象预报建模理论方法与应用[M]. 2004, 北京:气象出版社.
[5] 姚才, 金龙, 黄明策, 等. 遗传算法与神经网络相结合的热带气旋强度预报方法试验[J]. 海洋学报(中文版),2007,29(4):11-19.
[6] 林开平, 刘春霞, 黄颖, 等. 南海热带气旋强度预报的线性模型与非线性模型研究[J]. 热带气象学报,2013,29(6):1001-1007.
[7] 付文博, 孙涛, 梁藉, 等. 深度学习原理及应用综述[J]. 计算机科学,2018,45(S1):11-15,40.
[8] Combinido J S, Mendoza J R, Aborot J. A convolutional neural network approach for estimating tropical cyclone intensity using satellite-based infrared images[C].24th International Conference on Pattern Recognition,2018:1474-1480.
[9] 尹峻松, 肖健, 周宗潭, 等. 非线性流形学习方法的分析与应用[J].自然科学进展, 2007,17(8):1015-1025.
[10] 李鑫, 续婷, 胡红萍, 等.局部流形学习在SAR目标分类中的应用[J]. 现代雷达, 2020, 42(4):33-36,40.
[11] 王云艳, 罗冷坤, 王重阳. 基于流形学习的光学遥感图像分类[J]. 计算机工程与科学,2019,41(7):1212-1219.
[12] 刘开南,冯新扬,邵超.一种面向图像分类的流形学习降维算法[J].计算机应用与软件,2019,36(8):210-213+229.
[13] Tenenbaum J B,Silva V D,Langford J C.A global geometric framework for nonlinear dimensionality reduction[J]. Science,2000, 290(5500):2319-2323.
[14] Roweis S T. Saul L K. Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290(5500):2323-2326.
[15] Torgerson W S. Multidimensional scaling:I theory and method[J]. Psychometrika,1952,17(4):401-419.
[16] Jin L, Huang Y. A particle swarm optimization-neural network prediction model for typhoon intensity based on Isometric Mapping algorithm[C]. Fifth International Joint Conference on Computational Sciences and Optimization, 2012:857-861.
[17] Huang Y, Jin L. A prediction scheme with genetic neural network and Isomap algorithm for tropical cyclone intensity change over Western North Pacific[J]. Meteorology and Atmospheric Physics,2013,121(3-4):143-152.
[18] Lin K P,Chen B L,Dong Y,et al. A genetic neural network ensemble prediction model based on Locally Linear Embedding for typhoon intensity[C]. IEEE 8th Conference on Industrial Electronics and Applications, 2013:137-142.
[19] Jin L, Huang X Y, Shi X M, et al. A fuzzy neural network prediction model based on manifold learning to reduce dimensions for typhoon intensity[C]. IEEE 8th Conference on Industrial Electronics and Applications,2013:562-566.
[20] 黄颖, 金龙, 黄小燕, 等. 基于局部线性嵌人的人工智能台风强度集合预报模型[J]. 气象,2014,40(7):806-815.
[21] 朱东青. 基于PSO-BP神经网络的南海热带气旋预报研究[D]. 南京师范大学. 2012.
[22] Zhao H S, Jin L, Huang Y, et al. An application of ensemble prediction for typhoon intensity based on MDS and PSO-ANN[C].Fifth International Joint Conference on Computational Sciences and Optimization, 2012:885-888.
[23] 黄小燕,史旭明,刘苏东,等. 模糊神经网络方法在热带气旋强度预报中的应用研究[J]. 高原气象,2009,28(6):1408-1413.
[24] Specht D F. Probabilistic neural networks[J]. Neural Networks, 1990, 3(2):109-118.
[25] Huang X Y, Guan Z Y, He L ea al. A PNN prediction scheme for local tropical cyclone intensity over the South China Sea[J]. Natural Hazards, 2016, 81(2):1249-1267.
[26] 朱雷. 基于神经网络委员会机器的南中国海台风路径预报模型研究[D]. 华东师范大学. 2017.
[27] 周笑天. 基于混合模式集合预报的台风路径预报优化方法研究[D]. 浙江大学. 2019.
[28] 周笑天, 张丰, 杜震洪, 等. 基于神经网络集合预报的台风路径预报优化[J]. 浙江大学学报(理学版), 2020, 47(2):196-217.
[29] 黄小燕, 金龙. 条件数在台风移动路径预报中的应用[J].自然灾害学报, 2007, 16(3):35-40.
[30] 农吉夫. 预报因子选择的条件数方法及其在台风强度预报中的应用[J]. 数学的实践与认识, 2014, 44(23):146-152.
[31] Suykens J A K. Vandewalle J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3):393-300.
[32] 王鑫, 杨慧中. 基于LS-SVM的热带气旋强度预报[J]. 江南大学学报(自然科学版), 2010, 9(4):400-403.
[33] 吕庆平, 罗坚, 朱坤等. 基于SVM的气候持续法在热带气旋路径预报中的应用试验[J]. 海洋预报,2009,26(1):76-83.
[34] 顾锦荣,刘华强,刘向陪. 基于遗传算法-支持向量机模型在热带气旋强度预报中的应用[J]. 海洋预报, 2011,28(3):8-14.
[35] 钱燕珍, 孙军波, 陈佩燕, 等. 用数值预报释用方法做近海及登陆热带气旋强度预报[J]. 气象,2013,39(6):710-718.
[36] Wimmers A,Velden C, Cossuth J H. Using deep learning to estimate tropical cyclone intensity from satellite passive microwave imagery[J]. Monthly Weather Review, 2019, 147(6):2261-2282.
[37] Chen B F, Chen B,Lin H T, et al. Elsberry. Estimating tropical cyclone intensity by satellite imagery utilizing convolutional neural networks[J].Weather and Forecasting,2019,34(2):447-465.
[38] Pradhan R, Aygun R S, Maskey M, et al. Tropical cyclone intensity estimation using a deep convolutional neural network[J]. IEEE Transactions on Image Processing, 2018, 27(2):692-702.
[39] Lee J, Im J, Cha D H, et al. Tropical cyclone intensity estimation using multi-dimensional convolutional neural networks from geostationary satellite data[J]. Remote Sensing, 2019, 12(1):108.
[40] Zhang R, Liu Q S, Hang R L. Tropical cyclone intensity estimation using two-branch convolutional neural network from infrared and water vapor images[J].IEEE Transactions on Geoscience and Remote Sensing, 2020,58(1):586-597.
[41] Combinido J S, Mendoza J R, Aborot J. A convolutional neural network approach for estimating tropical cyclone intensity using satellite-based infrared images[C]. 24th International Conference on Pattern Recognition, 2018:1474-1480.
[42] Pan B,Xu X,Shi Z W.Tropical cyclone intensity prediction based on recurrent neural networks[J].Electronics Letters, 2019,55(7):413-415.
[43] Sharma A K, Prasad V, Kumar R, et al. Analysis on the occurrence of tropical cyclone in the South Pacific Region using recurrent neural network with LSTM[C].International Conference on Neural Information Processing,2018:476-486.
[44] Chandra R, Dayal K S. Coevolutionary recurrent neural networks for prediction of rapid intensification in wind intensity of tropical cyclones in the South Pacific Region[C].International Conference on Neural Information Processing,2015:43-52.

相似文献/References:

[1].广西热带气旋特征变化与灾损变化态势[J].气象研究与应用,2014,35(01):1.
[2]罗红磊,凌俪嘉,苏志,等.影响广西沿海风电场的热带气旋特征分析[J].气象研究与应用,2017,38(03):41.
 Luo Hong-lei,Ling Li-Jia,Su Zhi,et al.Characteristics of Tropical Cyclones Affecting the Coastal Wind Farms in Guangxi[J].Journal of Meteorological Research and Application,2017,38(04):41.
[3]韦昌雄,张廷龙,周方聪.两次登陆海南岛的热带气旋闪电活动特征对比分析[J].气象研究与应用,2016,37(04):1.
 Wei Chang-xiong,Zhang Ting-long,Zhou Fang-cong.Comparative analysis of lightning activity characteristic in two tropical cyclones landed in Hainan Island[J].Journal of Meteorological Research and Application,2016,37(04):1.
[4]陈秋萍,陈敏艳,刘爱鸣,等.登陆福建热带气旋短时强降水特征[J].气象研究与应用,2016,37(03):24.
 Chen Qiuping,Chen Mingyang,Liu Aimin,et al.Characteristics of Nowcasting Heavy Rain of Landing Troprcal Cyclones on Fujian[J].Journal of Meteorological Research and Application,2016,37(04):24.
[5]秦鹏,黄浩辉.影响广东沿海的热带气旋最大强度估算[J].气象研究与应用,2015,36(01):1.
 Qin Peng,Huang Hao-hui.Estimation on Maximum Intensity of Tropical Cyclones Affecting Guangdong Coast[J].Journal of Meteorological Research and Application,2015,36(04):1.
[6]李昌昊,梁晓京.201208号热带气旋“韦森特”影响南宁机场天气过程分析[J].气象研究与应用,2015,36(01):53.
 Li Changhao,Liang Xiaojing.The analysis on weather process of tropical cyclone “Vicente”(201208) influencing Nanning airport[J].Journal of Meteorological Research and Application,2015,36(04):53.
[7]苏志重,孙丞虎,周学鸣,等.不同起始时间的IPRC-RegCM模式对西北太平洋热带气旋预测误差对比分析[J].气象研究与应用,2015,36(02):8.
 SU Zhi-zhong,SUN Cheng-hu,ZHOU Xue-ming,et al.Different predictability of the tropical cyclones in the northwest pacific on different Initial moment by using IPRC-RegCM model[J].Journal of Meteorological Research and Application,2015,36(04):8.
[8]罗静兰,王迪龙.近十年影响云浮的热带气旋风雨分析及防御建议[J].气象研究与应用,2017,38(04):27.
 Luo Jinglan,Wang Dilong.Wind and rain analysis of tropical cyclones affecting Yunfu in recent ten years and defense suggestions[J].Journal of Meteorological Research and Application,2017,38(04):27.
[9]秦南南,钟玮,赵嘉琦.1949-2017年南海地区热带气旋统计特征研究[J].气象研究与应用,2019,40(03):1.
 Qin Nannan,Zhong Wei,Zhao Jiaqi.Statistical Characteristics of Tropical Cyclones in the South China Sea from 1949 to 2017[J].Journal of Meteorological Research and Application,2019,40(04):1.
[10]覃卫坚,党国花.热带季节内振荡与影响广西的热带气旋生成发展的联系[J].气象研究与应用,2020,41(01):1.[doi:10.19849/j.cnki.CN45-1356/P.2020.1.01]
 Qin Weijian,Dang Guohua.Relationship betwween Madden-Julian Osciuaton and the development of tropical cyclone in Guangxi[J].Journal of Meteorological Research and Application,2020,41(04):1.[doi:10.19849/j.cnki.CN45-1356/P.2020.1.01]

备注/Memo

备注/Memo:
收稿日期:2020-10-09。
基金项目:广西自然科学基金(2018GXNSFAA281229,2017GXNSFDA198030,2018GXNSFAA294128)、国家自然科学基金(42065004,41765002)
作者简介:金龙(1952-),男,研究员,主要从事人工智能技术方法研究与业务应用工作。E-mail:jinlong01@163.com
通讯作者:黄颖(1983-),女,高级工程师,主要从事天气预报技术方法研究与业务应用工作。E-mail:yinger2001@126.com
更新日期/Last Update: 1900-01-01