[1]郭彬,卓健,周冬静,等.基于智能计算的广西大风短临预报预警系统的产品检验[J].气象研究与应用,2021,42(01):80-84.[doi:10.19849/j.cnki.CN45-1356/P.2021.1.14]
 Guo Bin,Zhuo Jian,Zhou Dongjing,et al.Product inspection of Guangxi gale short-term forecast and early warning system based on intelligent computing[J].Journal of Meteorological Research and Application,2021,42(01):80-84.[doi:10.19849/j.cnki.CN45-1356/P.2021.1.14]
点击复制

基于智能计算的广西大风短临预报预警系统的产品检验()
分享到:

气象研究与应用[ISSN:1673-8411/CN:45-1356/P]

卷:
第42卷
期数:
2021年01期
页码:
80-84
栏目:
新技术应用
出版日期:
2021-03-31

文章信息/Info

Title:
Product inspection of Guangxi gale short-term forecast and early warning system based on intelligent computing
作者:
郭彬1 卓健2 周冬静1 苏彦1 毛家燊1 陈少斌1 奉意杰3
1. 崇左市气象局, 崇左 532200;
2. 广西壮族自治区气象信息中心, 南宁 530022;
3. 广西壮族自治区气象技术装备中心, 南宁 532200
Author(s):
Guo Bin1 Zhuo Jian2 Zhou Dongjing1 Su Yan1 Mao Jiashen1 Chen Shaobin1 Feng Yijie3
1. Chongzuo Meteorological Bureau, Chongzuo Guangxi 532200;
2. Guangxi Meteorological Information Center, Nanning Guangxi 530022;
3. Guangxi Meteorological Technical Equipment Center, Nanning Guangxi 532200
关键词:
智能计算大风短临预报预警系统验证
Keywords:
gale short-term early warningaccuracyeffective early warning
分类号:
S42
DOI:
10.19849/j.cnki.CN45-1356/P.2021.1.14
摘要:
利用机器学习和人工智能技术研发了广西大风短临预报预警系统,该系统的产品与同期广西各地气象局发布的大风预警信号(以下简称“人工预警”)进行比较分析。结果表明:(1)按业务评分规定,大风预警系统在漏报率和命中率方面更优,人工预警在TS评分和空报率方面更优;(2)有效提前预警情况下,大风预警系统在大风蓝色、黄色预警和不分级预警中TS评分较高。基于对大风预警系统和人工预警的数量、TS评分和预警提前量的差异分析,广西大风短临预报预警系统的产品性能达到同期人工预警水平。
Abstract:
Based on machine learning and artificial intelligence technology, Guangxi gale short-term forecasting and early warning system was developed. In order to evaluate the forecasting and early warning ability of the system, the products of the system were compared with the gale early warning signals(hereinafter referred to as"manual early warning") issued by meteorological bureaus of Guangxi in the same period. The results showed that(1) according to the business scoring rules, the gale early warning system was better in the missing report rate and hitting accuracy, while the manual early warning system was better in the TS score and empty report rate.(2) In the case of effective early warning, the gale warning system had a higher TS score in the blue, yellow warning and non-graded gale warning. Based on the difference analysis of the number, TS score and early warning amount, the product performance of Guangxi gale short-term early warning system reached the level of manual early warning in the same period.

参考文献/References:

[1] 彭兴德,王彪,何周见,等.气象灾害预警信号解读及发布问题探讨——以暴雨为例[J].中低纬山地气象,2018,42(6):78-82.
[2] 许彬,许爱华,陈云辉,等.强对流天气概念模型在江西"3·4"极端大风预报中的应用[J].暴雨灾害,2019,38(2):144-151.
[3] 罗静兰,曾繁威,王迪龙.云浮地区灾害性大风的特征[J].广东气象,2018,40(3):29-32.
[4] 杨新林,孙建华,鲁蓉,等.华南雷暴大风天气的环境条件分布特征[J].气象,2017,43(7):769-780.
[5] 李健,张文军.河西走廊中期大风预报模型探讨[J].青海气象,2019(4):6-9.
[6] 顾建峰,周国兵,刘伯骏,等.人工智能技术在重庆临近预报业务中的初步研究与应用[J].气象,2020,46(10):1286-1296.
[7] 胡启元,姚静,王楠.陕西省短时临近智能预报服务系统简介[J].陕西气象,2019(5):44-50.
[8] 陈元昭,兰红平,陈训来,等.短时临近预报系统在广东一次强对流天气过程中的检验分析[J].广东气象,2012,34(2):5-9.

相似文献/References:

[1]陆秋霖,黄荣,农孟松,等.2017年4月广西北部一次强对流天气中尺度分析[J].气象研究与应用,2017,38(02):18.
 Lu Qiulin,Huang Rong,Nong Mengsong,et al.Mesoscale analysis of a strong convective weather in northern Guangxi in April 2017[J].Journal of Meteorological Research and Application,2017,38(01):18.
[2]陈伟斌,陈见,赵金彪,等.一次飑线大风天气过程成因分析[J].气象研究与应用,2015,36(01):14.
 Chen Weibin,Chen Jian,Zhao Jinbiao,et al.Causative Analysis of a Squall Line Windy weather Process[J].Journal of Meteorological Research and Application,2015,36(01):14.
[3]覃庆第,邓正良,彭定宇,等.广西近海偏北大风过程极大风速分布特征[J].气象研究与应用,2018,39(02):10.
 Qin Qingdi,Deng Zhengliang,Peng Dingyu,et al.Distribution characteristics of maximum wind speed of northerly gale process in Guangxi offshore[J].Journal of Meteorological Research and Application,2018,39(01):10.
[4]赵飞,潘静,于潇,等.钦州港海域大风日数时空分布特征分析[J].气象研究与应用,2018,39(03):26.
 Zhao Fei,Pan Jing,Yu Xiao,et al.Analysis of temporal and spatial distribution characteristics of gale days in Qinzhou Port[J].Journal of Meteorological Research and Application,2018,39(01):26.
[5]金龙,黄颖,姚才,等.人工智能技术的热带气旋预报综述(之二)——流形学习、智能计算及深度学习的热带气旋预报方法[J].气象研究与应用,2020,41(04):5.[doi:10.19849/j.cnki.CN45-1356/P.2020.4.02]
 Jin Long,Huang Ying,Yao Cai,et al.Summary of tropical cyclone forecasting based on artificial intelligence technology (part 2)——tropical cyclone forecasting methods based on manifold learning, intelligent calculation and deep learning[J].Journal of Meteorological Research and Application,2020,41(01):5.[doi:10.19849/j.cnki.CN45-1356/P.2020.4.02]
[6]颜佳任,王伟健,张红华,等.2019年江苏两次江淮气旋暴雨大风过程分析[J].气象研究与应用,2021,42(02):83.[doi:10.19849/j.cnki.CN45-1356/P.2021.2.16]
 Yan Jiaren,Wang Weijian,Zhang Honghua,et al.Analysis of two rainstorm and gale processes of Jianghuai cyclone in Jiangsu Province in 2019[J].Journal of Meteorological Research and Application,2021,42(01):83.[doi:10.19849/j.cnki.CN45-1356/P.2021.2.16]
[7]肖志祥,姚才,郑凤琴,等.广西台风与海洋预报服务创新团队研究进展[J].气象研究与应用,2021,42(04):1.[doi:10.19849/j.cnki.CN45-1356/P.2021.4.01]
 Xiao Zhixiang,Yao Cai,Zheng Fengqin,et al.Research progress of Guangxi typhoon and ocean forecast service innovation team[J].Journal of Meteorological Research and Application,2021,42(01):1.[doi:10.19849/j.cnki.CN45-1356/P.2021.4.01]
[8]张容菁,李秀昌,彭武坚,等.玉林市“4·19”飑线大风成因及雷达特征分析[J].气象研究与应用,2023,44(03):90.[doi:10.19849/j.cnki.CN45-1356/P.2023.3.16]
 ZHANG Rongjing,LI Xiuchang,PENG Wujian,et al.Analysis of the causes of gale and radar characteristics of “4·19”squall line in Yulin[J].Journal of Meteorological Research and Application,2023,44(01):90.[doi:10.19849/j.cnki.CN45-1356/P.2023.3.16]

备注/Memo

备注/Memo:
收稿日期:2020-05-09。
基金项目:广西气象科研计划面上项目(桂气科2019M24)
作者简介:郭彬(1995-),女,本科,助理工程师,主要从事气象预警服务工作。E-mail:834300039@qq.com
通讯作者:卓健(1972-),男,本科,高级工程师,主要从事网络和雷达管理工作。E-mail:261817252@qq.com
更新日期/Last Update: 1900-01-01