[1]何南腾,邹嘉南,郭文弟,等.阿克苏地区日蒸散量估算方法研究[J].气象研究与应用,2022,43(02):35-40.[doi:10.19849/j.cnki.CN45-1356/P.2022.2.06]
 He Nanteng,Zou Jianan,Guo Wendi,et al.Study on estimation method of daily evapotranspiration in Aksu Prefecture[J].Journal of Meteorological Research and Application,2022,43(02):35-40.[doi:10.19849/j.cnki.CN45-1356/P.2022.2.06]
点击复制

阿克苏地区日蒸散量估算方法研究()
分享到:

气象研究与应用[ISSN:1673-8411/CN:45-1356/P]

卷:
第43卷
期数:
2022年02期
页码:
35-40
栏目:
研究论文
出版日期:
2022-06-15

文章信息/Info

Title:
Study on estimation method of daily evapotranspiration in Aksu Prefecture
作者:
何南腾1 邹嘉南1 郭文弟2 周笑迁1 狄迪1
1. 南京信息工程大学中国气象局气溶胶与云降水重点开放实验室, 南京 210044;
2. 中国地质调查局西安矿产资源调查中心, 西安 710100
Author(s):
He Nanteng1 Zou Jianan1 Guo Wendi2 Zhou Xiaoqian1 Di Di1
1. Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China;
2. Xi’an Center of Mineral Resources Survey, China Geological Survey, Xi’an 710100, China
关键词:
日蒸散量Penman-Monteith公式GRNNBP
Keywords:
daily evapotranspirationPenman-Monteith formulaGRNNBP
分类号:
P426.2
DOI:
10.19849/j.cnki.CN45-1356/P.2022.2.06
摘要:
采用阿克苏地区2006-2015年日蒸散量数据和气象数据,对几种不同的日蒸散量估算方法进行评估与修正。结果表明,修正后的彭曼公式在阿克苏地区的适用性、准确性有所提高,均方根误差值由11.78减小到8.80;BP神经网络比GRNN神经网络估算效果好,前者Nash-Sutcliffe系数为-0.09、RMSE值为3.27,后者Nash-Sutcliffe系数为-0.44、RMSE值为3.34。研究成果可为极端干旱区的棉花等作物节水种植提供参考。
Abstract:
Based on the daily evapotranspiration data and meteorological data of Aksu from 2006 to 2015, several different estimation methods of daily evapotranspiration were evaluated and modified. The applicability and accuracy of the modified Penman-Monteith(PM) formula in Aksu are improved, and the root mean square error is reduced from 11.78 to 8.80. The BP neural network (Back Propagation Neural Network) has better estimation effect than the GRNN(General Regression Neural Network). The former has a Nash-Sutcliffe coefficient of -0.09 and an RMSE value of 3.27, while the latter has a Nash-Sutcliffe coefficient of -0.44 and an RMSE value of 3.34. The research results can provide references for water-saving planting of cotton and other crops in extremely arid regions.

参考文献/References:

[1] 赵文智,吉喜斌,刘鹄.蒸散发观测研究进展及绿洲蒸散研究展望[J].干旱区研究,2011,28(3):463-470.
[2] Rosenberg N J, Blad B L,Verma S B.Microclimate-the Biological Environment of Plants[M]. New York:John Wiley&Sons,1983.
[3] 吴初梅,何鹏,戴平凤.蒸发量季节变化特点与干旱发生关系的初步分析[J].气象研究与应用,2008(3):8-11.
[4] 莫新,李英梅.干旱指标的探讨[J].广西气象,1991(1):25-27.
[5] 卢海新,朱天赐.厦门干旱成因和防旱抗旱对策[J].气象研究与应用,2010,31(3):24-26.
[6] C. Santos et al. Integrating satellite-based evapotranspiration with simulation models for irrigation management at the scheme level[J].Irrigation Science,2008,26(3):277-288.(重复出现)
[7] Zhao W Z,Liu B,Zhang Z H. Water Requirements of Maize in the Middle Heihe River Basin, China[J]. Agricultural Water Management, 2009, 97(2):215-223
[8] 彭昱忠,王谦,元昌安,等.数据挖掘技术在气象预报研究中的应用[J].干旱气象,2015,33(1):19-27.
[9] 郭二旺,郭乙霏,张凌杰,等.基于SEBAL模型和Landsat-8遥感数据的农田蒸散发估算[J].灌溉排水学报,2019, 38(1):83-89.
[10] 吴凡,陈植华,胡成.基于METRIC模型的江汉平原蒸散量估算适应性分析[J].安全与环境工程,2021,28(2):149-158.
[11] 陈志君,朱振闯,孙仕军,等.Stacking集成模型模拟膜下滴灌玉米逐日蒸散量和作物系数[J].农业工程学报,2021, 37(5):95-104.
[12] 陈超,庞艳梅,潘学标,等.四川地区参考作物蒸散量的变化特征及气候影响因素分析[J].中国农业气象,2011, 32(1):35-40.
[13] Xiao M Z,Kong D D. Improvement in the Estimation of Daily Net Surface Radiation in China[J]. Journal of Irrigation and Drainage Engineering, 2021,147(3).
[14] Chasset P O. GRNN:General regression neural network[J]. Revue De Physique Appliquée, 2013(6):1321-1325.
[15] Mcclelland J L, Kawamoto A H.Mechanisms of Sentence Processing:Assigning Roles to Constituents of Sentences[M]. Cambridge:MITPress,1986.

备注/Memo

备注/Memo:
收稿日期:2021-12-14。
基金项目:江苏省高等学校自然科学研究项目(21KJB170002)
作者简介:何南腾(2001-),男,学士,研究方向为颗粒物浓度反演。E-mail:201983300656@nuist.edu.cn
通讯作者:邹嘉南(1990-),男,博士,讲师,研究方向为气溶胶物理化学。E-mail:Zoujn16@nuist.edu.Cn
更新日期/Last Update: 1900-01-01