[1]张敏,袁心仪,张顾,等.CMA-WSP2.0在江苏地表太阳辐射预报中的检验评估[J].气象研究与应用,2024,45(01):17-22.[doi:10.19849/j.cnki.CN45-1356/P.2024.1.04]
 ZHANG Min,YUAN Xinyi,ZHANG Gu,et al.Validation and evaluation of CMA-WSP2.0 in surface solar radiation forecasting in Jiangsu[J].Journal of Meteorological Research and Application,2024,45(01):17-22.[doi:10.19849/j.cnki.CN45-1356/P.2024.1.04]
点击复制

CMA-WSP2.0在江苏地表太阳辐射预报中的检验评估()
分享到:

气象研究与应用[ISSN:1673-8411/CN:45-1356/P]

卷:
第45卷
期数:
2024年01期
页码:
17-22
栏目:
能源气象
出版日期:
2024-05-07

文章信息/Info

Title:
Validation and evaluation of CMA-WSP2.0 in surface solar radiation forecasting in Jiangsu
作者:
张敏12 袁心仪12 张顾12 王博妮12 孙明1 黄亮12 陈正洪3 葛行成1 周雪城12
1. 江苏省气象服务中心, 南京 210008;
2. 中国气象局交通气象重点开放实验室, 南京 210008;
3. 湖北省气象服务中心, 武汉 430205
Author(s):
ZHANG Min12 YUAN Xinyi12 ZHANG Gu12 WANG Boni12 SUN Ming1 HUANG Liang12 CHEN Zhenghong3 GE Hangcheng1 ZHOU Xuecheng12
1. Jiangsu Meteorological Service Center, Nanjing 210008, China;
2. Key Laboratory of Transportation Meteorology, China Meteorological Administration, Nanjing 210008, China;
3. Hubei Meteorological Service Center, Wuhan 430205, China
关键词:
CMA-WSP2.0地表太阳辐射检验评估准确率
Keywords:
CMA-WSP2.0surface solar radiationvalidation and evaluationaccuracy
分类号:
P45
DOI:
10.19849/j.cnki.CN45-1356/P.2024.1.04
摘要:
基于江苏省南京、淮安及吕泗三个标准辐射站2023年6月至12月总辐射观测数据,对中国气象局风能太阳能气象预报系统(CMA-WSP2.0)的地表太阳辐射产品进行检验评估。结果表明:(1) CMA-WSP2.0对南京、淮安和吕泗3 d内太阳辐射的整体预报效果较好,逐15 min第1d的预报与观测值相关系数可达0.85、0.87和0.86,随着预报时效增加,预报效果逐渐降低。(2)以淮安站为例,10-12月预报效果明显优于6-9月,说明秋冬季节明显高于夏季,其中11月预报效果最好,准确率高达92.2 %,而7月预报效果最差,准确率仅66.6 %,这与梅雨期强降水过程多、天气变化复杂有关。(3)从日变化来看,在11:00-15:00时段模式预报效果偏低,尤其7月。未来将探索应用多种方法对CMA-WSP2.0预报产品进行订正优化以提升其适用性
Abstract:
Based on the total radiation observation data of Nanjing, Huai’an, and Lvsi stations in Jiangsu Province from June to December 2023, the surface solar radiation products of the China Meteorological Administration Wind Energy and Solar Energy Forecasting System (CMA-WSP2.0) were examined and evaluated. The results are as follows:(1) CMA-WSP2.0 performs well in overall forecasting of the surface solar radiation at Nanjing, Huai’an and Lvsi stations within three days. The correlation coefficients between the forecast and observation values for these three stations on the first day are 0.85, 0.87 and 0.86 for 15 min intervals respectively. As the forecasting time increases, the correlation gradually decreases; (2) as for Huai’an Station, the forecast effect from October to December is significantly better than that from June to September, indicating that the forecast effect in autumn and winter seasons are significantly higher than that in summer. The forecast effect in November is the highest, with an accuracy of 92.2 %, while in July, the forecast effect is the worst, only 66.6 %, which is related to the frequent heavy rainfall processes and complex weather changes during the rainy season; (3) From the perspective of daily changes, the predictive performance of CMAWSP2.0 is relatively low during the period of 11:00-15:00, especially in July. Next, multiple methods will be explored to revise and optimize the CMA-WSP2.0 forecast products in order to improve its applicability.

参考文献/References:

[1] 李美成,高中亮,王龙泽,等."双碳"目标下我国太阳能利用技术的发展现状与展望[J].太阳能,2021, 331(11):13-18.
[2] 李明东,李婧雯."双碳"目标下中国分布式光伏发电的发展现状和展望[J].太阳能,2023, 349(5):5-10.
[3] 马胜红,陆虎俞.太阳能光伏发电技术(2)太阳能与太阳辐射[J].大众用电,2006(2):39-41.
[4] 孟祥星,于大洋,韩学山,等.太阳辐射与负荷波动的相关性对光伏发电并网的影响[J].山东大学学报(工学版),2010,40(2):126-129.
[5] 申彦波,赵宗慈,石广玉.地面太阳辐射的变化、影响因子及其可能的气候效应最新研究进展[J].地球科学进展,2008,23(9):915-923.
[6] 陈跃浩,熊明明,曹经福,等.雾霾天气对天津市太阳辐射影响的量化研究[J].气象与环境学报,2018,34(5):25-30.
[7] HATZIANASTASSIOU N,MATSOUKAS C,DRAKAKIS E,et al. The direct effect of aerosols on solar radiation based on satellite observations,reanalysis datasets,and spectral aerosol optical properties from Global Aerosol Data Set (GADS)[J].Atmospheric Chemistry&Physics, 2007,7(10):2585-2599.
[8] 尹青,张华,何金海.近48年华东地区地面太阳总辐射变化特征和影响因子分析[J].大气与环境光学学报, 2011, 6(1):37-46.
[9] 陈炜,艾欣,吴涛,等.光伏并网发电系统对电网的影响研究综述[J].电力自动化设备,2013, 33(2):26-39.
[10] 凌俪嘉,王婷,赵艳杰.基于MATLAB方法的太阳辐照度波动特征分析——以乌干达布库津杜太阳能热电混合电站为例[J].气象研究与应用, 2022, 43(4):98-103.
[11] 方琼玉,谭佳勇,丁美花,等.基于气候学方法的太阳能资源估算研究概述[J].气象研究与应用, 2023, 44(2):87-91.
[12] 郭媛,陈贻亮,何宽.近50年广西蒸发量与太阳辐射关系分析[J].气象研究与应用, 2018, 39(1):46-50.
[13] 谭宗琨,李政,丁美花,等.1961-2020年广西光合有效辐射时空分布特征[J].气象研究与应用, 2022, 43(4):7-12.
[14] 顾婷婷,潘娅英,张加易.浙江省中尺度数值预报系统的地表太阳辐射预报订正方法[J].干旱气象, 2022, 40(2):327-332.
[15] 丁立国,申彦波,马勋丹,等.FY-4A地面太阳辐射产品在贵州高原山区的适用性研究[J].高原气象,2022, 41(4):1041-1050.
[16] 朱燕,王明,许沛华,等.CMA-WSP地面辐射预报产品的检验评估[J].水电能源科学,2023, 41(12):225-228, 224.
[17] 王明欢,赖安伟,陈正洪,等.WRF模式模拟的地表短波辐射与实况对比分析[J].气象,2012,38(5):585-592.

备注/Memo

备注/Memo:
收稿日期:2023-12-08。
基金项目:江苏省气象局青年基金项目(KQ202210、KQ202310)
作者简介:张敏(1992-),女,工程师,硕士,从事能源气象服务工作,研究方向为风能太阳能预测和评估。E-mail:z857188112@163.com
通讯作者:王博妮(1984-),女,高级工程师,硕士,从事专业气象预报服务和大气环境研究工作。E-mail:bnsmile@163.com
更新日期/Last Update: 1900-01-01