[1]何跃,张新科,李强,等.GPM和CMORPH卫星产品在重庆暴雨过程中的应用评估[J].气象研究与应用,2024,45(01):64-71.[doi:10.19849/j.cnki.CN45-1356/P.2024.1.11]
 HE Yue,ZHANG Xinke,LI Qiang,et al.Application evaluation of GPM and CMORPH satellite products during rainstorms in Chongqing[J].Journal of Meteorological Research and Application,2024,45(01):64-71.[doi:10.19849/j.cnki.CN45-1356/P.2024.1.11]
点击复制

GPM和CMORPH卫星产品在重庆暴雨过程中的应用评估()
分享到:

气象研究与应用[ISSN:1673-8411/CN:45-1356/P]

卷:
第45卷
期数:
2024年01期
页码:
64-71
栏目:
研究论文
出版日期:
2024-05-07

文章信息/Info

Title:
Application evaluation of GPM and CMORPH satellite products during rainstorms in Chongqing
作者:
何跃1 张新科2 李强1 邓承之1
1. 重庆市气象台, 重庆 401147;
2. 重庆市荣昌区气象局, 重庆 荣昌 402460
Author(s):
HE Yue1 ZHANG Xinke2 LI Qiang1 DENG Chengzhi1
1. Chongqing Meteorological Observatory, Chongqing 401147, China;
2. Meteorological Bureau of Rongchang District, Chongqing Rongchang 402460, China
关键词:
暴雨卫星产品GPMCMORPH应用评估
Keywords:
rainstormsatellite productsGPMCMORPHapplication evaluation
分类号:
P426.6
DOI:
10.19849/j.cnki.CN45-1356/P.2024.1.11
摘要:
基于2020年6月重庆地区连续3次暴雨过程期间地面高时空分辨率加密雨量观测资料,评估GPM (IMERG)和CMORPH两种主流卫星降水产品对重庆暴雨强降水的估测精度。结果表明,IMERG和CMORPH总体上能较好地捕捉到重庆地区暴雨强降水的时间和空间分布特征,但两种卫星产品均表现为高估过程降水量,IMERG的相对误差RB在0.7 %~41.6 %之间,CMORPH的RB在23.7 %~82.8 %之间,CMORPH较IMERG高估更为显著。两种卫星产品对雨强小于20 mm·h-1的降水估测精度具有显著的系统性误差,表现为低估雨强小于2.0 mm·h-1的降水,高估雨强4.0~19.9 mm·h-1的降水,且IMERG的估测精度要优于CMORPH。对雨强超过20 mm·h-1的极端强降水,两种卫星产品均表现出极大的不稳定性,探测率(POD)和临界成功指数(CSI)均小于0.1,误报率(FAR)均大于0.85,估测能力有限,需要进一步改进算法。
Abstract:
Based on the ground-level high-spatiotemporal-resolution encrypted rainfall observation data during three consecutive regional rainstorm processes in Chongqing in June 2020, the estimation accuracies of two mainstream satellite precipitation products, IMERG (GPM) and CMORPH, for heavy rainfall in Chongqing was evaluated. The results show that IMERG and CMORPH can generally capture the temporal and spatial distribution characteristics of heavy rainfall in Chongqing. However, both satellite products overestimate the total precipitation during the rainstorm processes, with the relative error (RB) of IMERG ranging from 0.7 % to 41.6 %, and the RB of CMORPH ranging from 23.7 % to 82.8 %, and the overestimation of CMORPH is more significant than that of IMERG. At the same time, the two satellite products have significant systematic errors in the estimation accuracy of precipitation with rainfall intensity less than 20 mm·h-1, which is manifested as underestimation of rainfall intensity less than 2.0 mm·h-1 and overestimation of rainfall with rainfall intensity of 4.0~19.9 mm·h-1, and the estimation accuracy of IMERG is better than that of CMORPH. For extreme precipitation with a rainfall intensity exceeding 20 mm·h-1, both satellite products show great instability, the detection rate (POD) and the critical success index (CSI) are less than 0.1, and the false alarm rate (FAR) is greater than 0.85, which means the estimation ability is limited, and further improvement of the algorithm is needed.

参考文献/References:

[1] ALLAN R P,SODEN B J. Atmospheric warming and the amplification of precipitation extremes[J]. Science,2008:1481-1484.
[2] 李铭宇,韩婷婷,郝鑫.欧亚大陆极端降水事件的区域变化特征[J].大气科学学报, 2020, 43(4):687-698.
[3] DONAT M G, LOWRY A L, ALEXANDER L V, et al.More extreme precipitation in the world’s dry and wet regions[J]. Nature Climate Change,2016:1-7.
[4] 马洁华,孙建奇,汪君,等.2018年夏季我国极端降水及滑坡泥石流灾害预测[J].大气科学学报, 2019, 42(1):93-99.
[5] TABARI H. Climate change impact on flood and extreme precipitation increases with water availability[J]. Scientific Reports,2020, 10(1):1-10.
[6] GUO H, CHEN S, BAO A, et al.Comprehensive evaluation of high-resolution satellite-based precipitation products over China[J]. Atmosphere,2016.
[7] 王磊,陈仁升,宋耀选.高寒山区面降水量获取方法及影响因素研究进展[J].高原气象, 2017, 36(6):1546-1556.
[8] KRAJEWSKI W F,NTELEKOS A A,GOSKA R. A GISbased methodology for the assessment of weather radar beam blockage in mountainous regions:two examples from the US NEXRAD network[J]. Computers&Geosciences, 2006:283-302.
[9] GUO H, CHEN S, BAO A, et al. Early assessment of integrated multi-satellite retrievals for global precipitation measurement over China[J]. Atmospheric Research,2016:121-133.
[10] 徐小红,余兴,刘贵华,等.冰雹云卫星早期识别与自动预警[J].大气科学, 2022, 46(1):98-110.
[11] CHEN S,HONG Y,CAO Q,et al. Performance evaluation of radar and satellite rainfalls for Typhoon Morakot over Taiwan:Are remote-sensing products ready for gauge denial scenario of extreme events[J]. Journal of Hydrology, 2013:4-13.
[12] 肖柳斯,张阿思,闵超,等. GPM卫星降水产品在台风极端降水过程的误差评估[J].高原气象,2019, 38(5):993-1003.
[13] 唐飞,陈凤娇,诸葛小勇,等.利用卫星遥感资料分析台风"烟花"(202106)的影响过程[J].大气科学学报, 2021, 44(5):703-716.
[14] JIANG Q,LI W Y,WEN J H,et al. Accuracy evaluation of two high-resolution satellite-based rainfall products:TRMM 3B42V7 and CMORPH in Shanghai[J]. Water, 2018.
[15] ZHANG A S,XIAO L S,MIN C,et al. Evaluation of latest GPM-Era high-resolution satellite precipitation products during the May 2017 Guangdong extreme rainfall event[J]. Atmospheric Research, 2018.
[16] 魏栋,刘丽伟,田文寿,等.基于卫星资料的西北地区高原涡强降水分析[J].高原气象, 2021, 40(4):829-839.
[17] 黄朝盈,张阿思,陈生,等.基于GPM卫星和地面雷达对江苏盐城龙卷风强降水估测的对比[J].大气科学学报, 2020, 43(2):370-380.
[18] JOYCE R J,JANOWIAK J E,ARKIN P A,et al. CMORPH:A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution[J]. Journal of Hydrometeorology, 2004:487-503.
[19] HUFFMAN G J,BOLVIN D T,BRAITHWAITE D,et al. NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG)[C]. Algorithm Theoretical Basis Document (ATBD) Version 4.4,2015.
[20] 黄会杰.重庆市区域性暴雨危险度与灾情综合评估研究[D].重庆:西南大学,2018.
[21] 方勉,何君涛,符永铭,等.基于GPM卫星降水产品对1808号超强台风"玛利亚"降水结构的分析[J].大气科学学报, 2019, 42(6):845-854.
[22] 何红艳,郭志华,肖文发.降水空间插值技术的研究进展[J].生态学杂志, 2005, 24(10):1187-1191.
[23] 李海涛,邵泽东.空间插值分析算法综述[J].计算机系统应用, 2019, 28(7):1-8.
[24] 高琦,徐明,李武阶,等.我国面雨量研究及业务应用进展[J].气象科技展, 2014, 4(2):66-69.
[25] 王曙东,惠建忠,张国平,等.短时临近气象服务降水量等级标准研究[C]//中国气象学会.第34届中国气象学会年会S11创新驱动智慧气象服务——第七届气象服务发展论坛论文集.2017:368-369.
[26] ZHANG C,CHEN X,SHAO H,et al. Evaluation and intercomparison of high-resolution satellite precipitation estimates-GPM,TRMM,and CMORPH in the Tianshan Mountain Area[J]. Remote Sensing,2018,10(10).
[27] 许时光,牛铮,沈艳,等.CMORPH卫星降水数据在中国区域的误差特征研究[J].遥感技术与应用, 2014, 29(2):189-194.
[28] OLIVEIRA R,MAGGIONI V,VILA D,et al. Using satellite error modeling to improve GPM-Level 3 rainfall estimates over the central Amazon region[J]. Remote Sensing, 2018.
[29] 赵平伟,李斌,王佳妮,等.GPM IMERG和ERA5降水数据精度在云南复杂地形区域的评估检验[J].气象科技,2021, 49(1):114-123.
[30] KIM J, HAN H. Evaluation of the CMORPH highresolution precipitation product for hydrological applications over South Korea[J]. Atmospheric Research, 2021.

相似文献/References:

[1]许霖,姚蓉,陈斗,等.湖南两次流域性致洪暴雨异同点分析[J].气象研究与应用,2014,35(02):27.
[2]叶朗明,陈明惠,夏冠聪.华南一次特大暴雨诊断分析及数值模拟[J].气象研究与应用,2014,35(03):20.
[3]杨新 柯文华 张小荣 任文斌 廖胜石.两次副高边缘特大暴雨对比分析[J].气象研究与应用,2014,35(04):1.
[4]陈 冰,江满桃,郭潮升,等.化州暴雨气候特征分析及极端事件重现期计算[J].气象研究与应用,2014,35(04):19.
[5]蒙炤臻,陈见,韩慎友,等.广西台风残涡暴雨发生特征分析[J].气象研究与应用,2017,38(01):20.
 Characteristic Analysis on Rainstorms of Typhoon Remnant Vortexes in Guangxi[J].Journal of Meteorological Research and Application,2017,38(01):20.
[6]黄卓帆,黄冬梅,赖晟.河池市复杂地形的一次强降雨分析[J].气象研究与应用,2017,38(01):50.
 Huang Zhuo-fan,Huang Dong-mei,Lai Sheng.Analysis of a Heavy Rainfall in Complex Terrain of Hechi City[J].Journal of Meteorological Research and Application,2017,38(01):50.
[7]林墨,林宗桂,廖雪萍,等.云系结构特征与降雨强度关系分析[J].气象研究与应用,2017,38(03):36.
 Lin Mo,Lin Zong-gui,Liao Xue-ping,et al.Analysis of the relationship between the cloud structure and precipitation intensity[J].Journal of Meteorological Research and Application,2017,38(01):36.
[8]李渝平,王庆国,苏兆达.广西一次暴雨过程的数值预报产品位涡特征分析[J].气象研究与应用,2016,37(03):38.
 Li Yu-ping,Wang Qing-guo,Su Zhao-da.Potential Vorticity Analysis of ECMWF Thin-grid Numerical Predication Products of a Rainstorm in Guangxi[J].Journal of Meteorological Research and Application,2016,37(01):38.
[9]刘桂华,李永荣,黄河,等.2015年5月桂北两次暴雨天气过程对比分析[J].气象研究与应用,2016,37(01):38.
 Liu Gui-hua,Li Yong-rong,Huang He,et al.Comparative analysis on twice torrential rain weather processes in May 2015 of northern Guangxi[J].Journal of Meteorological Research and Application,2016,37(01):38.
[10]李岩,周文志,唐熠.桂林11月深秋极端天气分析与专业气象服务对策[J].气象研究与应用,2016,37(01):52.
 Li yan,zhou wen-zhi,Tang Yi.Extreme weather analysis and meteorological service countermeasure for Guilin in November[J].Journal of Meteorological Research and Application,2016,37(01):52.

备注/Memo

备注/Memo:
收稿日期:2023-11-05。
基金项目:中国气象局创新发展专项(CXFZ2022J011)、重庆市自然科学基金面上项目(CSTB2022NSCQ-MSX0665)
作者简介:何跃(1982-),男,主要从事数值天气预报和决策气象研究工作。E-mail:554540466@qq.com
更新日期/Last Update: 1900-01-01