[1]覃卫坚,何莉阳,蔡悦幸.广西暴雨集中度智能气候预测方法研究[J].气象研究与应用,2024,45(03):12-20.[doi:10.19849/j.cnki.CN45-1356/P.2024.3.02]
 QIN Weijian,HE Liyang,CAI Yuexing.Research on intelligent climate prediction methods of rainstorm concentration in Guangxi[J].Journal of Meteorological Research and Application,2024,45(03):12-20.[doi:10.19849/j.cnki.CN45-1356/P.2024.3.02]
点击复制

广西暴雨集中度智能气候预测方法研究()
分享到:

气象研究与应用[ISSN:1673-8411/CN:45-1356/P]

卷:
第45卷
期数:
2024年03期
页码:
12-20
栏目:
研究论文
出版日期:
2024-09-15

文章信息/Info

Title:
Research on intelligent climate prediction methods of rainstorm concentration in Guangxi
作者:
覃卫坚 何莉阳 蔡悦幸
广西壮族自治区气候中心, 南宁 530022
Author(s):
QIN Weijian HE Liyang CAI Yuexing
Guangxi Climate Center, Nanning 530022, China
关键词:
暴雨集中度集中期粒子群-神经网络随机森林算法
Keywords:
rainstormconcentration degreeconcentration periodparticle swarm neural networkrandom forest algorithm
分类号:
P456
DOI:
10.19849/j.cnki.CN45-1356/P.2024.3.02
文献标志码:
10.19849/j.cnki.CN45-1356/P.2024.3.02
摘要:
利用1961—2023年广西79个气象观测站逐日降水和国家气候中心大气环流、海温指数资料,构建广西暴雨集中度计算方法,基于逐步回归方法、粒子群-神经网络、随机森林算法,建立暴雨集中度气候预测模型。结果表明,广西存在以桂林和柳州两市北部为中心的桂东北地区、以“东兰、巴马、凤山”为中心的桂西山区和沿海地区三个暴雨集中度高值区,暴雨集中度异常大小基本反映发生洪涝和干旱灾害的严重程度。经过2020—2023年气候预测试验,粒子群-神经网络算法预测效果最好,其次为随机森林算法,第三是逐步回归方法。
Abstract:
In this study, using the daily precipitation of 79 meteorological observation stations in Guangxi and the data of the atmospheric circulation indices and sea surface temperature indices data of the National Climate Center from 1961 to 2023, we constructed a method for calculating the rainstorm concentration in Guangxi, and established a climate prediction model for the concentration of rainstorm based on the stepwise regression method, the particle swarm neural network, and random forest algorithm. The results showed that there are three areas of high rainstorm concentration in Guangxi, namely, the northeastern part of Guangxi centered on the northern part of Guilin and Liuzhou, the mountainous area in the western part of Guangxi centered on“Donglan, Bama, Fengshan”area, as well as the coastal area. The anomaly of rainstorm concentration basically reflects the severity of flooding and drought disasters. The climate prediction model of rainstorm concentration based on the stepwise regression method, particle swarm optimization neural network and random forest algorithm is established. According to the climate prediction experiments in 2020—2023, the most effective prediction was made by the particle swarm-neural network algorithm, followed by the random forest algorithm, and finally by the stepwise regression method.

参考文献/References:

[1] ZHANG L J,QIAN Y F.Annual distribution features of the yearly precipitation in China and their interannual variations[J]. Acta Meteorologica Sinica,2003,17(2): 146-163.
[2] 张录军,钱永甫.长江流域汛期降水集中程度和洪涝关系研究[J].地球物理学报,2004,47(4):622-630.
[3] 杨金虎,李耀辉,王鹏祥,等.中国极端强降水事件年内非均匀性特征分析[J]. 自然资源学报,2007,22(4): 623-633.
[4] 张运福,胡春丽,赵春雨,等.东北地区降水年内分配的不均匀性[J]. 自然灾害学报,2009,18(2):89-94.
[5] QIN W J,LI D L,LEI X M,et al. Analysis on intra-annual inhomogeneity of rainstorm events in Guangxi[J]. Journal of Tropical Meteorology,2014,20(2):135-142.
[6] KARORI M A,LI J P,JIN F F. The asymmetric influence of the two types of El Ni? and La Ni? on summer rainfall over southeast China[J]. Journal of Climate,2013(26): 4567-4582.
[7] ZHU Z,LI T,He J. Out-of-phase relationship between boreal spring and summer decadal rainfall changes in southern China[J].Journal of Climate,2014(27):1083-1099.
[8] Nguyen-Le D,Matsumoto J,Ngo-Duc T. Onset of the rainy seasons in the eastern indochina peninsula[J]. J. Climate, 2015(28):5645-5666.
[9] 章开美,李丽平,陈胜东. 华南前汛期极端降水年代际异常及其影响因子分析[J]. 干旱气象,2016,34(1): 64-74.
[10] 王彦明,高建芸,池艳珍. 太平洋海温场不同时间尺度背景下华南前汛期持续性暴雨的统计特征[J]. 大气科学学报,2015,38(1):126-131.
[11] 覃卫坚,李栋梁,蔡悦幸. 广西大范围暴雨气候异常对太平洋年代际涛动的响应[J]. 热带气象学报,2022,38(2):161-170.
[12] 蔡学湛. 青藏高原雪盖与东亚季风异常对华南前汛期降水的影响[J]. 应用气象学报,2001,12(3):358-367.
[13] WANG C,YANG K,LI Y,et al.Impacts of spatiotemporal anomalies of Tibetan Plateau snow cover on summer precipitation in Eastern China[J]. Journal of Climate,2017(30):885-903.
[14] 陆虹,翟盘茂,覃卫坚,等.低温雨雪过程的粒子群-神经网络预报模型[J].应用气象学报,2015,26(5):513-524.
[15] 覃卫坚,陆虹,黄志,等.粒子群-神经网络法在广西寒露风日数预报中的应用[J].气象与环境学报,2015,31(6):158-162.
[16] 覃卫坚,李耀先,陈思蓉,等.粒子群-神经网络在华南夏季降水短期气候预测中应用研究[J].气象研究与应用,2015,36(2):1-7.
[17] 孔庆燕,史旭明,金龙.基于粒子群-支持向量机定量降水集合预报方法[J].数学的实践与认识,2017,47(5): 219-225.
[18] 吴建生,刘丽萍,金龙. 粒子群-神经网络集成学习算法气象预报建模研究[J]. 热带气象学报,2008,24(6): 679-686.
[19] 田心如,蔡凝昊,张志薇. 基于气象因子及机器学习回归算法的夏季空调负荷预测[J]. 气象科学,2019,39(4):548-555.
[20] KIM H L,KIM B H.Flood hazard rating prediction for urban areas using random forest and LSTM[J]. Journal of Civil Engineering,2020,24(12):3884-3896.
[21] KENNEDY J,EBERHART R C. Particle swarm optimization[C]//IEEE.proceedings of ICNN’95-international conference on neural network,1995:1942-1948.
[22] ANON.IEEE international conference on neural networks [Z].1995.
[23] 吴建生,刘丽萍,金龙.粒子群-神经网络集成学习算法气象预报建模研究[J]. 热带气象学报,2008,24(6): 679-686.
[24] 覃卫坚,李耀先,陈思蓉,等.粒子群-神经网络在华南夏季降水短期气候预测中应用研究[J]. 气象研究与应用,2015,36(2):1-7.
[25] 覃卫坚,廖雪萍,陈思蓉. 延伸期暴雨过程的神经网络预报技术应用初探[J]. 气象研究与应用,2018,39(4): 1-4.
[26] RIGET J,VESTERSTROM J S. A diversity-guided particle swarm optimizer-the ARPSO[J]. Technical Report 2002-02,Department of Computer Science,University of Aarhus,2002:345-350.
[27] 魏一钊,陈军锋.基于随机森林算法的冻融期土壤蒸发预报模型研究[J].水电能源科学,2021,39(4):20-23.
[28] 覃卫坚,何莉阳,蔡悦幸. 基于两种机器学习方法的广西后汛期降水预测模型[J].气象研究与应用,2022,43(1):8-13.

相似文献/References:

[1]许霖,姚蓉,陈斗,等.湖南两次流域性致洪暴雨异同点分析[J].气象研究与应用,2014,35(02):27.
[2]叶朗明,陈明惠,夏冠聪.华南一次特大暴雨诊断分析及数值模拟[J].气象研究与应用,2014,35(03):20.
[3]杨新 柯文华 张小荣 任文斌 廖胜石.两次副高边缘特大暴雨对比分析[J].气象研究与应用,2014,35(04):1.
[4]陈 冰,江满桃,郭潮升,等.化州暴雨气候特征分析及极端事件重现期计算[J].气象研究与应用,2014,35(04):19.
[5]蒙炤臻,陈见,韩慎友,等.广西台风残涡暴雨发生特征分析[J].气象研究与应用,2017,38(01):20.
 Characteristic Analysis on Rainstorms of Typhoon Remnant Vortexes in Guangxi[J].Journal of Meteorological Research and Application,2017,38(03):20.
[6]黄卓帆,黄冬梅,赖晟.河池市复杂地形的一次强降雨分析[J].气象研究与应用,2017,38(01):50.
 Huang Zhuo-fan,Huang Dong-mei,Lai Sheng.Analysis of a Heavy Rainfall in Complex Terrain of Hechi City[J].Journal of Meteorological Research and Application,2017,38(03):50.
[7]林墨,林宗桂,廖雪萍,等.云系结构特征与降雨强度关系分析[J].气象研究与应用,2017,38(03):36.
 Lin Mo,Lin Zong-gui,Liao Xue-ping,et al.Analysis of the relationship between the cloud structure and precipitation intensity[J].Journal of Meteorological Research and Application,2017,38(03):36.
[8]李渝平,王庆国,苏兆达.广西一次暴雨过程的数值预报产品位涡特征分析[J].气象研究与应用,2016,37(03):38.
 Li Yu-ping,Wang Qing-guo,Su Zhao-da.Potential Vorticity Analysis of ECMWF Thin-grid Numerical Predication Products of a Rainstorm in Guangxi[J].Journal of Meteorological Research and Application,2016,37(03):38.
[9]刘桂华,李永荣,黄河,等.2015年5月桂北两次暴雨天气过程对比分析[J].气象研究与应用,2016,37(01):38.
 Liu Gui-hua,Li Yong-rong,Huang He,et al.Comparative analysis on twice torrential rain weather processes in May 2015 of northern Guangxi[J].Journal of Meteorological Research and Application,2016,37(03):38.
[10]李岩,周文志,唐熠.桂林11月深秋极端天气分析与专业气象服务对策[J].气象研究与应用,2016,37(01):52.
 Li yan,zhou wen-zhi,Tang Yi.Extreme weather analysis and meteorological service countermeasure for Guilin in November[J].Journal of Meteorological Research and Application,2016,37(03):52.

备注/Memo

备注/Memo:
收稿日期:2024-5-15。
基金项目:广西科技计划项目(桂科AB21075005)、广西气象科技计划项目(2023Z005)
作者简介:覃卫坚(1971-),博士,正高级工程师,主要从事气候变化和气候预测研究。E-mail:qinweijian2008@126.com
更新日期/Last Update: 2024-09-15