[1]徐圣璇,张成扬,陈丹.登陆华南台风频次影响因子的气候模式预测能力研究[J].气象研究与应用,2020,41(03):16-20.[doi:10.19849/j.cnki.CN45-1356/P.2020.3.03]
 Xu Shengxuan,Zhang Chengyang,Chen Dan.Prediction ability of climate models for the frequency influencing factors of landing typhoons in south China[J].Journal of Meteorological Research and Application,2020,41(03):16-20.[doi:10.19849/j.cnki.CN45-1356/P.2020.3.03]
点击复制

登陆华南台风频次影响因子的气候模式预测能力研究()
分享到:

气象研究与应用[ISSN:1673-8411/CN:45-1356/P]

卷:
第41卷
期数:
2020年03期
页码:
16-20
栏目:
研究论文
出版日期:
2020-09-30

文章信息/Info

Title:
Prediction ability of climate models for the frequency influencing factors of landing typhoons in south China
作者:
徐圣璇1 张成扬1 陈丹2
1. 广西壮族自治区气候中心, 南宁 530022;
2. 广西壮族自治区气象科学研究所, 南宁 530022
Author(s):
Xu Shengxuan1 Zhang Chengyang1 Chen Dan2
Guangxi Climate Center, Nanning 530022
关键词:
CFSv2模式登陆华南台风预报
Keywords:
CFSv2 modellanding typhoon in South Chinaforecast
分类号:
P457.8
DOI:
10.19849/j.cnki.CN45-1356/P.2020.3.03
摘要:
利用1982-2010年美国环境预报中心CFSv2回报数据、美国台风预警中心西太平洋热带气旋资料数据集和欧洲中心的大气再分析资料,分析了气候模式中对于登陆华南台风频次影响因子的预报能力。结果表明,CFSv2在提前0~2个月预报后汛期的模式产品中,对登陆华南台风频次影响因子存在正预报技巧;而模式对于受ENSO影响的低层季风环流,在提前0~6个月的预报产品中均有较高的预报技巧;同时,利用模式预报低层风场的EOF分量作为登陆华南台风频次的预报因子,具有较高的可靠性。
Abstract:
Using the CFSv2 report data from the US Environmental Forecast Center from 1982 to 2010, the western Pacific tropical cyclone data set of the US Typhoon Warning Center and the atmospheric reanalysis data from the European Center, the forecasting capabilities of the climate model for the factors affecting the frequency of landing typhoons in South China were analyzed. The results show that CFSv2 has positive forecasting skills for the influencing factors of typhoon landing frequency in South China in the model products that forecast the post-flood season 0-2 months in advance. For the low-level monsoon circulation affected by ENSO, the model has higher forecasting skills in the forecast products 0-6 months in advance. Besides, using the model to predict the EOF component of the low-level wind field as a predictor of typhoon landing frequency in South China has high reliability.

参考文献/References:

[1] 罗小莉,姚才,谭金凯.登陆华南台风的频数及强度变化特征分析[J].海洋预报,2018,35(4):58-67.
[2] Wu, H, Zhai P. Changes in persistent and non-persistent flood season precipitation over South China during 1961-2010[J]. Acta Meteorological Sinica,2013,27,788-798.
[3] 杨瑞,刘合香,唐飞笼,等. 1995-2016年登陆华南台风极端灾害特征的统计分析[J].广西师范学院学报(自然科学版),2018,35(2):47-58.
[4] 姚才, 黄明策, 贺海晏. 影响华南西部的登陆热带气旋的若干气候特征[J]. 中山大学学报(自然科学版), 2005, 44(5):102-107.
[5] 贺海晏, 简茂球, 宋丽莉,等. 近50a广东登陆热带气旋的若干气候特征[J]. 气象科学, 2003,23(4):401-409.
[6] Zhang C Y, Hu C D, Huang G, et al. Perspective on landfalling frequency and genesis location variations of southern China typhoon during peak summer[J]. Geophysical Research Letters. 2019, 46(12):6830-6838.
[7] Liu K S, Chan J C L. Climatological characteristics and seasonal forecasting of tropical cyclones making landfall along the South China coast[J]. Monthly Weather Review, 2003,131(8,Part 1):1650-1662.
[8] Camargo S J, Robertson A W, Gaffney S J, et al. Cluster analysis of typhoon tracks Part I[J]. Journal of Climate, 2007,20(14):3635-3653.
[9] Camargo S J, Robertson A W, Gaffney S J, et al. Cluster analysis of typhoon tracks Part II[J]. Journal of Climate, 2007,20(14):3654-3676.
[10] 范可.西北太平洋台风生成频次的新预测因子和新预测模型[J].中国科学(D辑:地球科学),2007,37(9):1260-1266.
[11] 应明,万日金.影响我国的热带气旋年频数预测[J].应用气象学报,2011,22(1):66-76.
[12] 王萌, 刘合香, 卢耀健,等. 基于模糊时间序列的华南台风登陆时最大风速极值预测模型[J].海洋气象学报, 2019(4),68-74.
[13] 翁向宇, 胡丽甜, 李晓娟, 等. 登陆中国的热带气旋强度和频数物理统计预测模型及其应用[J]. 热带气象学报,2010,26(4):470-474.
[14] 马占良, 时兴合, 杨延华. 青海省月降水、气温的动力模式解释应用及其效果检验[J]. 青海气象,2009(3):12-16.
[15] 覃志年, 陈丽娟, 唐红玉,等.月尺度动力模式产品解释应用系统及预测技巧[J]. 应用气象学报,2010,21(5):614-616.
[16] 张智勇. 欧洲中心和日本数值预报格点产品解释应用初探[J]. 吉林气象, 2005(1):10-12.
[17] 邢彩盈, 吴慧, 胡德强,等. CFSv2模式产品在汛期海南热带气旋频数预测模型中的应用[J]. 气象科学, 2017, 37(5):666-672.
[18] 刘长征, 杜良敏, 柯宗建,等. 国家气候中心多模式解释应用集成预测[J]. 应用气象学报, 2013, 24(6):677-685.
[19] Dee,D P, Uppalas M, Simmons A J, et al. The ERA-Interim reanalysis:Configuration and performance of the data assimilation system[J]. Quarterly Journal of the Royal Meteorological Society, 2011,137(656):553-597.
[20] Wang B, Fan Z. Choice of south Asian summer monsoon indices[J]. Bulletin of the American Meteorological Society, 1999(80):629-638.
[21] Yang S, Zhang Z, Kousky V E, et al. Simulations and seasonal prediction of the Asian summer monsoon in the NCEP Climate Forecast System[J]. J Climate, 2008(21):3755-3775.
[22] Yang S, and Jiang X. Prediction of eastern and central Pacific ENSO events and their impacts on East Asian climate by the NCEP Climate Forecast System[J]. J Climate, 2014(27):4451-4472.
[23] 葛彩莲, 蔡焕杰, 王健,等. 基于BP神经网络的降雨量预测研究[J]. 节水灌溉, 2010(11):7-10.
[24] 农吉夫, 金龙. 基于MATLAB的主成分RBF神经网络降水预报模型[J]. 热带气象学报, 2008, 24(6):713-717.
[25] 胡广义, 张秋文, 张勇传. 基于BP人工神经网络的分布式降雨量插值估算[J]. 华中科技大学学报:自然科学版,2009,37(4):112-115.
[26] 贾小龙, 陈丽娟, 高辉,等. 我国短期气候预测技术进展[J]. 应用气象学报, 2013(6):3-17.

相似文献/References:

[1]张东方,成青燕,何慧根,等.CFSv2模式资料在成都市延伸期降水预测中的应用评估[J].气象研究与应用,2021,42(02):1.[doi:10.19849/j.cnki.CN45-1356/P.2021.2.01]
 Zhang Dongfang,Cheng Qingyan,He Huigen,et al.Application and evaluation of CFSv2 model data in extended precipitation forecast of Chengdu[J].Journal of Meteorological Research and Application,2021,42(03):1.[doi:10.19849/j.cnki.CN45-1356/P.2021.2.01]

备注/Memo

备注/Memo:
收稿日期:2020-04-08。
基金项目:广西中小河流暴雨洪涝灾害风险评估与预警研究(2017GXNSFBA198165)
作者简介:徐圣璇(1986-),男,学士,工程师,从事气候与气候变化管理工作。E-mail:xushengxuan-0520@163.com
更新日期/Last Update: 1900-01-01