参考文献/References:
[1] 李程怡. 人工智能的关键技术及相关应用[J]. 科技创新与应用. 2020(12):156-157,160.
[2] 朱玲,吴心玥.人工智能在气象领域的应用述评[J]. 广东气象,2019,41(1):35-39.
[3] 张韧, 蒋国荣,余志豪,等. 利用神经网络计算方法建立太平洋副高活动的预报模型[J]. 应用气象学报,2000,11(4):474-483.
[4] 金龙. 神经网络气象预报建模理论方法与应用[M]. 2004, 北京:气象出版社.
[5] 姚才, 金龙, 黄明策, 等. 遗传算法与神经网络相结合的热带气旋强度预报方法试验[J]. 海洋学报(中文版),2007,29(4):11-19.
[6] 林开平, 刘春霞, 黄颖, 等. 南海热带气旋强度预报的线性模型与非线性模型研究[J]. 热带气象学报,2013,29(6):1001-1007.
[7] 付文博, 孙涛, 梁藉, 等. 深度学习原理及应用综述[J]. 计算机科学,2018,45(S1):11-15,40.
[8] Combinido J S, Mendoza J R, Aborot J. A convolutional neural network approach for estimating tropical cyclone intensity using satellite-based infrared images[C].24th International Conference on Pattern Recognition,2018:1474-1480.
[9] 尹峻松, 肖健, 周宗潭, 等. 非线性流形学习方法的分析与应用[J].自然科学进展, 2007,17(8):1015-1025.
[10] 李鑫, 续婷, 胡红萍, 等.局部流形学习在SAR目标分类中的应用[J]. 现代雷达, 2020, 42(4):33-36,40.
[11] 王云艳, 罗冷坤, 王重阳. 基于流形学习的光学遥感图像分类[J]. 计算机工程与科学,2019,41(7):1212-1219.
[12] 刘开南,冯新扬,邵超.一种面向图像分类的流形学习降维算法[J].计算机应用与软件,2019,36(8):210-213+229.
[13] Tenenbaum J B,Silva V D,Langford J C.A global geometric framework for nonlinear dimensionality reduction[J]. Science,2000, 290(5500):2319-2323.
[14] Roweis S T. Saul L K. Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290(5500):2323-2326.
[15] Torgerson W S. Multidimensional scaling:I theory and method[J]. Psychometrika,1952,17(4):401-419.
[16] Jin L, Huang Y. A particle swarm optimization-neural network prediction model for typhoon intensity based on Isometric Mapping algorithm[C]. Fifth International Joint Conference on Computational Sciences and Optimization, 2012:857-861.
[17] Huang Y, Jin L. A prediction scheme with genetic neural network and Isomap algorithm for tropical cyclone intensity change over Western North Pacific[J]. Meteorology and Atmospheric Physics,2013,121(3-4):143-152.
[18] Lin K P,Chen B L,Dong Y,et al. A genetic neural network ensemble prediction model based on Locally Linear Embedding for typhoon intensity[C]. IEEE 8th Conference on Industrial Electronics and Applications, 2013:137-142.
[19] Jin L, Huang X Y, Shi X M, et al. A fuzzy neural network prediction model based on manifold learning to reduce dimensions for typhoon intensity[C]. IEEE 8th Conference on Industrial Electronics and Applications,2013:562-566.
[20] 黄颖, 金龙, 黄小燕, 等. 基于局部线性嵌人的人工智能台风强度集合预报模型[J]. 气象,2014,40(7):806-815.
[21] 朱东青. 基于PSO-BP神经网络的南海热带气旋预报研究[D]. 南京师范大学. 2012.
[22] Zhao H S, Jin L, Huang Y, et al. An application of ensemble prediction for typhoon intensity based on MDS and PSO-ANN[C].Fifth International Joint Conference on Computational Sciences and Optimization, 2012:885-888.
[23] 黄小燕,史旭明,刘苏东,等. 模糊神经网络方法在热带气旋强度预报中的应用研究[J]. 高原气象,2009,28(6):1408-1413.
[24] Specht D F. Probabilistic neural networks[J]. Neural Networks, 1990, 3(2):109-118.
[25] Huang X Y, Guan Z Y, He L ea al. A PNN prediction scheme for local tropical cyclone intensity over the South China Sea[J]. Natural Hazards, 2016, 81(2):1249-1267.
[26] 朱雷. 基于神经网络委员会机器的南中国海台风路径预报模型研究[D]. 华东师范大学. 2017.
[27] 周笑天. 基于混合模式集合预报的台风路径预报优化方法研究[D]. 浙江大学. 2019.
[28] 周笑天, 张丰, 杜震洪, 等. 基于神经网络集合预报的台风路径预报优化[J]. 浙江大学学报(理学版), 2020, 47(2):196-217.
[29] 黄小燕, 金龙. 条件数在台风移动路径预报中的应用[J].自然灾害学报, 2007, 16(3):35-40.
[30] 农吉夫. 预报因子选择的条件数方法及其在台风强度预报中的应用[J]. 数学的实践与认识, 2014, 44(23):146-152.
[31] Suykens J A K. Vandewalle J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3):393-300.
[32] 王鑫, 杨慧中. 基于LS-SVM的热带气旋强度预报[J]. 江南大学学报(自然科学版), 2010, 9(4):400-403.
[33] 吕庆平, 罗坚, 朱坤等. 基于SVM的气候持续法在热带气旋路径预报中的应用试验[J]. 海洋预报,2009,26(1):76-83.
[34] 顾锦荣,刘华强,刘向陪. 基于遗传算法-支持向量机模型在热带气旋强度预报中的应用[J]. 海洋预报, 2011,28(3):8-14.
[35] 钱燕珍, 孙军波, 陈佩燕, 等. 用数值预报释用方法做近海及登陆热带气旋强度预报[J]. 气象,2013,39(6):710-718.
[36] Wimmers A,Velden C, Cossuth J H. Using deep learning to estimate tropical cyclone intensity from satellite passive microwave imagery[J]. Monthly Weather Review, 2019, 147(6):2261-2282.
[37] Chen B F, Chen B,Lin H T, et al. Elsberry. Estimating tropical cyclone intensity by satellite imagery utilizing convolutional neural networks[J].Weather and Forecasting,2019,34(2):447-465.
[38] Pradhan R, Aygun R S, Maskey M, et al. Tropical cyclone intensity estimation using a deep convolutional neural network[J]. IEEE Transactions on Image Processing, 2018, 27(2):692-702.
[39] Lee J, Im J, Cha D H, et al. Tropical cyclone intensity estimation using multi-dimensional convolutional neural networks from geostationary satellite data[J]. Remote Sensing, 2019, 12(1):108.
[40] Zhang R, Liu Q S, Hang R L. Tropical cyclone intensity estimation using two-branch convolutional neural network from infrared and water vapor images[J].IEEE Transactions on Geoscience and Remote Sensing, 2020,58(1):586-597.
[41] Combinido J S, Mendoza J R, Aborot J. A convolutional neural network approach for estimating tropical cyclone intensity using satellite-based infrared images[C]. 24th International Conference on Pattern Recognition, 2018:1474-1480.
[42] Pan B,Xu X,Shi Z W.Tropical cyclone intensity prediction based on recurrent neural networks[J].Electronics Letters, 2019,55(7):413-415.
[43] Sharma A K, Prasad V, Kumar R, et al. Analysis on the occurrence of tropical cyclone in the South Pacific Region using recurrent neural network with LSTM[C].International Conference on Neural Information Processing,2018:476-486.
[44] Chandra R, Dayal K S. Coevolutionary recurrent neural networks for prediction of rapid intensification in wind intensity of tropical cyclones in the South Pacific Region[C].International Conference on Neural Information Processing,2015:43-52.
相似文献/References:
[1].广西热带气旋特征变化与灾损变化态势[J].气象研究与应用,2014,35(01):1.
[2]罗红磊,凌俪嘉,苏志,等.影响广西沿海风电场的热带气旋特征分析[J].气象研究与应用,2017,38(03):41.
Luo Hong-lei,Ling Li-Jia,Su Zhi,et al.Characteristics of Tropical Cyclones Affecting the Coastal Wind Farms in Guangxi[J].Journal of Meteorological Research and Application,2017,38(04):41.
[3]韦昌雄,张廷龙,周方聪.两次登陆海南岛的热带气旋闪电活动特征对比分析[J].气象研究与应用,2016,37(04):1.
Wei Chang-xiong,Zhang Ting-long,Zhou Fang-cong.Comparative analysis of lightning activity characteristic in two tropical cyclones landed in Hainan Island[J].Journal of Meteorological Research and Application,2016,37(04):1.
[4]陈秋萍,陈敏艳,刘爱鸣,等.登陆福建热带气旋短时强降水特征[J].气象研究与应用,2016,37(03):24.
Chen Qiuping,Chen Mingyang,Liu Aimin,et al.Characteristics of Nowcasting Heavy Rain of Landing Troprcal Cyclones on Fujian[J].Journal of Meteorological Research and Application,2016,37(04):24.
[5]秦鹏,黄浩辉.影响广东沿海的热带气旋最大强度估算[J].气象研究与应用,2015,36(01):1.
Qin Peng,Huang Hao-hui.Estimation on Maximum Intensity of Tropical Cyclones Affecting Guangdong Coast[J].Journal of Meteorological Research and Application,2015,36(04):1.
[6]李昌昊,梁晓京.201208号热带气旋“韦森特”影响南宁机场天气过程分析[J].气象研究与应用,2015,36(01):53.
Li Changhao,Liang Xiaojing.The analysis on weather process of tropical cyclone “Vicente”(201208) influencing Nanning airport[J].Journal of Meteorological Research and Application,2015,36(04):53.
[7]苏志重,孙丞虎,周学鸣,等.不同起始时间的IPRC-RegCM模式对西北太平洋热带气旋预测误差对比分析[J].气象研究与应用,2015,36(02):8.
SU Zhi-zhong,SUN Cheng-hu,ZHOU Xue-ming,et al.Different predictability of the tropical cyclones in the northwest pacific on different Initial moment by using IPRC-RegCM model[J].Journal of Meteorological Research and Application,2015,36(04):8.
[8]罗静兰,王迪龙.近十年影响云浮的热带气旋风雨分析及防御建议[J].气象研究与应用,2017,38(04):27.
Luo Jinglan,Wang Dilong.Wind and rain analysis of tropical cyclones affecting Yunfu in recent ten years and defense suggestions[J].Journal of Meteorological Research and Application,2017,38(04):27.
[9]秦南南,钟玮,赵嘉琦.1949-2017年南海地区热带气旋统计特征研究[J].气象研究与应用,2019,40(03):1.
Qin Nannan,Zhong Wei,Zhao Jiaqi.Statistical Characteristics of Tropical Cyclones in the South China Sea from 1949 to 2017[J].Journal of Meteorological Research and Application,2019,40(04):1.
[10]覃卫坚,党国花.热带季节内振荡与影响广西的热带气旋生成发展的联系[J].气象研究与应用,2020,41(01):1.[doi:10.19849/j.cnki.CN45-1356/P.2020.1.01]
Qin Weijian,Dang Guohua.Relationship betwween Madden-Julian Osciuaton and the development of tropical cyclone in Guangxi[J].Journal of Meteorological Research and Application,2020,41(04):1.[doi:10.19849/j.cnki.CN45-1356/P.2020.1.01]