[1]覃皓.一次垂直切变不稳定背景下的重力波过程分析[J].气象研究与应用,2022,43(02):9-15.[doi:10.19849/j.cnki.CN45-1356/P.2022.2.02]
 Qin Hao.Analysis on a gravity wave process under vertical shear instability environment[J].Journal of Meteorological Research and Application,2022,43(02):9-15.[doi:10.19849/j.cnki.CN45-1356/P.2022.2.02]
点击复制

一次垂直切变不稳定背景下的重力波过程分析()
分享到:

气象研究与应用[ISSN:1673-8411/CN:45-1356/P]

卷:
第43卷
期数:
2022年02期
页码:
9-15
栏目:
研究论文
出版日期:
2022-06-15

文章信息/Info

Title:
Analysis on a gravity wave process under vertical shear instability environment
作者:
覃皓
广西壮族自治区气象台, 南宁 530022
Author(s):
Qin Hao
Guangxi Meteorological Observatory, Nanning 530022, China
关键词:
重力波切变不稳定急流理查逊数
Keywords:
gravity waveshear instabilityjet streamRichardson number
分类号:
P425
DOI:
10.19849/j.cnki.CN45-1356/P.2022.2.02
摘要:
利用常规气象观测数据以及再分析资料,对2022年1月30-31日,广西中部至南部出现大面积具有波动特征的带状回波过程中重力波的发展及传播进行了诊断分析。结果表明:(1)此过程广西受南支槽前西南急流控制,强垂直风切变为重力波的发展提供了扰动背景。广西位于锋面冷空气一侧,低层静力稳定层结为重力波的传播提供了必要条件。(2)此过程受到周期为5~7h的重力波影响。在过程初期,切变不稳定增强对重力波具有激发作用。在波动成熟和维持阶段,基本气流向重力波的能量输送,弥补了波动传播过程中的能量耗散。Richardson数具有较好的指示意义。(3)波动中的上升运动将水汽向高层输送,潜热加热的正反馈以及不稳定能量释放使得重力波的抬升扰动可以延展至更高层次。
Abstract:
Based on the conventional observation and reanalysis data, the development and propagation of gravity wave in the process of large-area band echo with fluctuating characteristics from central to southern Guangxi from January 30 to 31, 2022 were diagnosed and analyzed. The results showed that(1) Guangxi was controlled by the southwest jet in front of the south branch trough during the whole process, and the strong vertical wind shear provided the disturbance background for the development of gravity waves. On the cold side of the front, the static stable layer in low level provided the necessary conditions for gravity wave propagation. (2) Wavelet analysis showed that the process was affected by gravity waves with a period of 5~7h. In the early stage of the process, the enhanced shear instability excited the gravity wave. During the wave maturation and maintenance stage, the energy transferred from the basic flow to the gravity wave compensating the energy dissipation by the wave propagation. The Richardson number has a good indicative significance in the above process. (3) The upward motion of the wave transported water vapor to the upper level, and the positive feedback of latent heating and unstable energy release made the gravity wave uplifting disturbance extend to a higher level.

参考文献/References:

[1] 谢家旭, 李国平. 重力波与对流耦合作用在一次山地突发性暴雨触发中的机理分析[J].大气科学,2021,45(3):617-632.
[2] 吴琼, 梅海霞, 秦孟晟,等. 一次大暴雨过程中地形重力波拖曳作用的研究[J]. 气象研究与应用,2021,42(2):7-12.
[3] 朱莉, 丁治英, 张腾飞, 等. 重力波与低纬高原地区MβCSs地域特征的关系[J].大气科学学报,2010,33(5):561-568.
[4] 徐燚, 闫敬华, 王谦谦, 等. 华南暖区暴雨的一种低层重力波触发机制[J]. 高原气象, 2013,32(4):1050-1061.
[5] Du Y, Zhang F Q. Banded Convective Activity Associated with Mesoscale Gravity Waves Over Southern China[J]. Journal of Geophysical Research Atmospheres, 2019,124(4):1912-1930.
[6] 桑建国, 李启泰. 小尺度地形引起的切变重力波[J].气象学报, 1992, 50(2):227-231.
[7] 吴迪, 王澄海, 何光碧. 青藏高原地区夏季两次强降水过程中重力波特征分析[J]. 高原气象,2016,35(4):854-864.
[8] Uccellini L W, Koch S E. The Synoptic Setting and Possible Energy Sources for Mesoscale Wave Disturbances[J]. Monthly Weather Review, 1987, 115(3):721-729.
[9] Zhang F Q, Davis C A, Kaplan M L, et al. Wavelet Analysis and the Governing Dynamics of a Large-Amplitude Mesoscale Gravity-Wave Event along the East Coast of the United States[J]. Quarterly Journal of the Royal Meteorological Society, 2001, 127:2209-2245.
[10] Gall R,Williams R T, Clark T L. Gravity Waves Generated during Frontogenesis[J]. Journal of the Atmospheric Sciences, 1998, 45(15):2204-2220.
[11] Piani C, Alexander M J,Holton J R, et al. A Numerical Study of Three-Dimensional Gravity Waves Triggered by Deep Tropical Convection and Their Role in the Dynamics of the QBO[J]. Journal of the Atmospheric Sciences, 2000, 57(22):3689-3702.
[12] Lane T P, Doyle J D, Plougonven R. Observations and Numerical Simulations of Inertia-Gravity Waves and Shearing Instabilities in the Vicinity of a Jet Stream[J]. Journal of the Atmospheric Sciences,2004,61(22):2692-2706.
[13] 覃卫坚, 寿绍文, 李启泰, 等. 影响惯性重力波活动规律的动力学因子研究[J]. 高原气象,2007, 26(3):519-524.
[14] Fritsch J M, Chappell C F. Numerical Prediction of Convectively Driven Mesoscale Pressure Systems,Part I:Convective Parameterization[J]. Journal of the Atmospheric Sciences, 1980, 37(8):1722-1733.
[15] Eom,Kyung J. Analysis of the Internal Gravity Wave Occurrence of 19 April 1970 in the Midwest[J]. Monthly Weather Review,1975,103(3):217-226.
[16] Koch S E, O’Handley C. Operational Forecasting and Detection of Mesoscale Gravity Waves[J]. Weather and Forecasting, 1997,12(2):253-281.
[17] 王文, 刘佳, 蔡晓军. 重力波对青藏高原东侧一次暴雨过程的影响[J]. 大气科学学报, 2011,34(6):737-747.
[18] Zhang D L, Fritsch J M. Numerical Simulation of the Meso-β Scale Structure and Evolution of the 1977 Johnstown Flood. Part I:Model Description and Verification[J]. Journal of the Atmospheric Sciences,1986,43(18):1913-1944.
[19] 董良淼, 农孟松, 梁俊聪, 等. 华南西部高架冰雹强对流天气过程的特征及成因分析[J]. 广西科学院学报, 2015,31(2):139-147,154.
[20] 吕晓娜. 2015年河南首场区域暴雪伴高架雷暴过程分析[J]. 气象研究与应用, 2015,36(4):45-52,132.
[21] Ruppert J H, Koch S E, Chen X, et al. Mesoscale Gravity Waves and Midlatitude Weather:A Tribute to Fuqing Zhang[J].Bulletin of the American Meteorological Society,2021,103(1):129-156.
[22] 王文, 程攀. 一次暴雨过程数值模拟与诊断分析[J]. 气象与环境学报, 2013, 29(1):1-11.
[23] 林开平, 陈伟斌, 刘国忠, 等. 广西暴雨业务预报技术回顾与展望[J]. 气象研究与应用, 2020, 41(4):13-19.
[24] 苏兆达, 潘杰丽, 梁岱云, 等. 广西对流尺度数值预报模式产品在南宁的应用初探[J]. 气象研究与应用, 2022,43(1):66-72.

备注/Memo

备注/Memo:
收稿日期:2021-12-02。
基金项目:广西气象科研计划项目(桂气科2022QN08、桂气科2021Z03)、广西气象科研计划重点项目(2020Z05)、广西壮族自治区气象局短时临近天气预报技术创新团队项目
作者简介:覃皓(1991-),男,硕士,工程师,主要从事灾害性天气诊断分析及预报研究。E-mail:289055112@qq.com
更新日期/Last Update: 1900-01-01