参考文献/References:
[1] Knofczynski G T. MundfromD. Sample Sizes when Using Multiple Linear Regression for Prediction. [J]. Educational & Psychological Measurement, 2008, 68(3): 431-442.
[2] 修春波, 任晓, 李艳晴, 等. 基于卡尔曼滤波的风速序列短期预测方法[J]. 电工技术学报, 2014, 29(2): 253-259.
[3] Nayak M A, Ghosh S. Prediction of Extreme Rainfall Event Using Weather Pattern Recognition and Support Vector Machine Classifier[J]. Theoretical & Applied Climatology, 2013, 114(3-4): 583-603.
[4] Cevik H H, Cunkas M, Polat K. A New Multistage Short-term Wind Power Forecast Model using Decomposition and Artificial Intelligence Methods[J]. Physica A: Statistical Mechanics and its Applications, 2019(534): 122-177.
[5] 勾海芝, 赵征, 夏子涵. 基于经验模式分解的神经网络组合风速预测研究[J]. 电力科学与工程, 2017, 33(10): 62-67.
[6] 杨晓君, 张楠, 陈宏, 等. 基于人工神经网络算法的渤海海风预报方法研究[J]. 干旱气象, 2019, 37(1): 146-152.
[7] 朱智慧, 黄宁立, 王延凤. 台风影响期间上海沿海极大风速预报方法研究[A]. 中国气象学会. 创新驱动发展提高气象灾害防御能力—S2灾害天气监测、分析与预报[C]. 中国气象学会, 2013: 8.
[8] 钱燕珍, 孙军波, 余晖, 等. 用支持向量机方法做登陆热带气旋站点大风预报[J]. 气象, 2012, 38(3): 300-306.
[9] 肖志祥, 姚才, 赵金彪, 等. 广西热带气旋预报业务和研究进展[J]. 气象研究与应用, 2020, 41(4): 20-27.
[10] 金龙, 黄颖, 姚才, 等. 人工智能技术的热带气旋预报综述(之一)——BP神经网络和集成方法的热带气旋预报研究和业务应用[J]. 气象研究与应用, 2020, 41(2): 1-6.
[11] 郭彬, 卓健, 周冬静, 等. 基于智能计算的广西大风短临预报预警系统的产品检验[J]. 气象研究与应用, 2021, 42(1): 80-84.
[12] 陈润珍, 孔宁谦. 广西沿海热带气旋大风数值预报探讨[J]. 海洋预报, 2004(1): 52-55.
[13] 董彦, 林开平, 黄小燕. 南海热带气旋大风的遗传-神经网络集合预报[J]. 气象研究与应用, 2014, 35(1): 40-45.
[14] 李忠, 刘景霞. 基于遗传算法和最小二乘支持向量机的风电场超短期风速预测[J]. 电工技术, 2021(13): 56-59+66.
[15] 钱斌凯, 何彩芬, 金炜, 等. 基于支持向量机的多因子风速预测[J]. 宁波大学学报(理工版), 2018, 31(3): 14-19.
[16] 黄小燕, 史旭明, 刘苏东, 等. 模糊神经网络方法在热带气旋强度预报中的应用研究[J]. 高原气象, 2009, 28(6): 1408-1413.
相似文献/References:
[1]赖珍权,翟丽萍,古文保.1415号台风“海鸥”的卫星云图及雷达资料分析[J].气象研究与应用,2017,38(02):10.
Lai Zhenquan,Zhai Liping,Gu Wenbao.Analysis of typhoon Kalmaegi(1415) based on satellite images and radar data[J].Journal of Meteorological Research and Application,2017,38(04):10.
[2]麦雪湖,植江玲,麦文强.台风“彩虹”(1522)的数值模拟及增强条件分析[J].气象研究与应用,2017,38(01):30.
Mai Xue-hu,Zhi Jiang-ling,Mai Wen-qiang.Analysis on the numerical simulation and enhancing conditions of typhoon “Mujigea”[J].Journal of Meteorological Research and Application,2017,38(04):30.
[3]黄卓,廖雪萍.2016年台风“莎莉嘉”对广西的影响评估[J].气象研究与应用,2017,38(01):40.
Huang Zhuo,Liao Xue-ping.Impact assessment of typhoon “Sarika” on Guangxi in 2016[J].Journal of Meteorological Research and Application,2017,38(04):40.
[4]李妍君,陈耀登.台风“凡亚比”的诊断分析和数值模拟研究[J].气象研究与应用,2017,38(03):1.
Li Yan-jun,Chen Yao-deng.Typhoon “Fanapi” diagnostic analysis and numerical simulation research[J].Journal of Meteorological Research and Application,2017,38(04):1.
[5]钟利华,李仲怡,李勇,等.西江流域台风暴雨面雨量分布特征及天气概念模型[J].气象研究与应用,2017,38(03):13.
Zhong Li-hua,Li Zhong-yi,Li Yong,et al.Areal rainfall distribution characteristics of typhoon torrential rain and weather concept model of Xijiang basin[J].Journal of Meteorological Research and Application,2017,38(04):13.
[6]郑志阳,杨苏勤,刘德和,等.影响福建省惠安县台风气候特征及其不同路径的风雨影响[J].气象研究与应用,2016,37(01):34.
Zheng Zhiyang,Yang Suqin,Liu Dehe,et al.Influence of fujian province huian typhoon climate characteristics and the effect of different paths[J].Journal of Meteorological Research and Application,2016,37(04):34.
[7]刘远方.台风“海鸥”影响南宁机场强降水过程分析[J].气象研究与应用,2016,37(01):56.
Liu yuan-fang.The analysis of heavy rainfall process during Nanning airport affected by typhoon “kalmaegi”[J].Journal of Meteorological Research and Application,2016,37(04):56.
[8]周渭,蒋平凡,黎馨.2015台风“彩虹”强降雨过程分析[J].气象研究与应用,2016,37(02):16.
Zhou Wei,Jiang Ping-fan,Li Xin.Analysis of strong rainfall caused by Typhoon “Mujigae” in 2015[J].Journal of Meteorological Research and Application,2016,37(04):16.
[9]刘英轶,陈婉华,郭晓薇.做好专业天气网站台风气象服务的几点思考[J].气象研究与应用,2017,38(04):107.
Liu Yingyi,Chen Wanhua,Guo Xiaowei.Thoughts on improving typhoon weather service on professional weather website[J].Journal of Meteorological Research and Application,2017,38(04):107.
[10]黄荣,黄晴,屈梅芳,等.1713号台风“天鸽”外围龙卷特征及成因分析[J].气象研究与应用,2018,39(01):28.
Huang Rong,Huang Qing,Qu Meifang,et al.Analysis of the characteristics and causes of the peripheral tornado of NO.1713 Typhoon Hato[J].Journal of Meteorological Research and Application,2018,39(04):28.