参考文献/References:
[1] 张小玲,杨波,盛杰,等.中国强对流天气预报业务发展[J].气象科技进展, 2018,8(3):8-18.
[2] 张鹏程,贾旸旸.一种基于多层感知器的动态区域联合短时降水预报方法[J].计算机应用与软件,2018,35(11):159-164+189.
[3] 郑永光,张小玲,周庆亮,等.强对流天气短时临近预报业务技术进展与挑战[J].气象, 2010, 36(7):33-42.
[4] 韩雷,王洪庆,谭晓光,等.基于雷达数据的风暴体识别、追踪及预警的研究进展[J].气象, 2007,33(1):5-12.
[5] NAGARAJAN, Aditya.Explorations into Machine Learning Techniques for Precipitation Nowcasting[DB/OL].https://scholarworks.umass.edu/masters_theses_2/480,2017.
[6] 段婧,苗春生.人工神经网络在梅雨期短期降水分级预报中的应用[J].气象, 2005, 31(8):31-36.
[7] Han L, Dai J, Zhang W, et al. A deep belief network approach using VDRAS data for nowcasting[C]//International Conference on Graphic&Image Processing. Ninth International Conference on Graphic and Image Processing (ICGIP 2017), 2018.
[8] Shi E, Li Q, Gu D, et al. A Method of Weather Radar Echo Extrapolation Based on Convolutional Neural Networks[M]//MultiMedia Modeling Springer Cham 2018.
[9] Jiang L, Zhang W, Han L. Strong convective storm nowcasting using a hybrid approach of convolutional neural network and hidden Markov model[C]//Ninth International Conference on Graphic and Image Processing,2018.
[10] Pan B, Hsu K, AghaKouchak A, et al. Improving precipitation estimation using convolutional neural network[J]. Water Resources Research, 2019, 55(3):2301-2321.
[11] Zhang W, Han L, Sun J, et al. Application of Multi-channel 3D-cube Successive Convolution Network for Convective Storm Nowcasting[C].2019 IEEE International Conference on Big Data (Big Data),2017:1705-1710.
[12] Ayzel G, et al. All convolutional neural networks for radar-based precipitation nowcasting[J]. Procedia Computer Science,2019,150:186-192.
[13] Xingjian S H I, Chen Z, Wang H, et al. Convolutional LSTM network:A machine learning approach for precipitation nowcasting[C]//Advances in neural information processing systems. 2015:802-810.
[14] [1] 李琨,武麦凤.基于SWAN数据的定量降水预报(QPF)研究[C].//中国气象学会:第30届中国气象学会年会论文集,2013:1-5.
[15] 韩丰,沃伟峰. SWAN2.0系统的设计与实现[J].应用气象学报, 2018, 29(1):27-36.
[16] 黄奇章.广东降水气候特征及其成因分析[J].热带地理, 1990, 10(2):113-124.
[17] 伍红雨,邹燕,刘尉.广东区域性暴雨过程的定量化评估及气候特征[J].应用气象学报, 2019(2):233-244.
[18] Graves A. Generating Sequences With Recurrent Neural Networks[J]. Computer Science, 2013.
相似文献/References:
[1].基于神经网络的广州市能见度预报[J].气象研究与应用,2014,35(01):17.
[2].基于MATLAB神经网络对大同市气溶胶浓度预测[J].气象研究与应用,2014,35(01):50.
[3]覃卫坚,黄志,李耀先.广西寒露风开始期短期气候预测方法研究[J].气象研究与应用,2014,35(03):11.
[4]金龙,黄颖,姚才,等.人工智能技术的热带气旋预报综述(之一)——BP神经网络和集成方法的热带气旋预报研究和业务应用[J].气象研究与应用,2020,41(02):1.[doi:10.19849/j.cnki.CN45-1356/P.2020.2.01]
Jin Long,Huang Ying,Yao Cai,et al.A review of tropical cyclone forecast based on artificial intelligence (part 1)——BP neural network and ensemble method for tropical cyclone forecast research and operational application[J].Journal of Meteorological Research and Application,2020,41(01):1.[doi:10.19849/j.cnki.CN45-1356/P.2020.2.01]
[5]金龙,黄颖,姚才,等.人工智能技术的热带气旋预报综述(之二)——流形学习、智能计算及深度学习的热带气旋预报方法[J].气象研究与应用,2020,41(04):5.[doi:10.19849/j.cnki.CN45-1356/P.2020.4.02]
Jin Long,Huang Ying,Yao Cai,et al.Summary of tropical cyclone forecasting based on artificial intelligence technology (part 2)——tropical cyclone forecasting methods based on manifold learning, intelligent calculation and deep learning[J].Journal of Meteorological Research and Application,2020,41(01):5.[doi:10.19849/j.cnki.CN45-1356/P.2020.4.02]
[6]何慧,陆虹,覃卫坚,等.人工神经网络在月降水量预测业务中的研究和应用综述[J].气象研究与应用,2021,42(01):1.[doi:10.19849/j.cnki.CN45-1356/P.2021.1.01]
He Hui,Lu Hong,Qin Weijian,et al.Research and application of artificial neural network in monthly precipitation forecast[J].Journal of Meteorological Research and Application,2021,42(01):1.[doi:10.19849/j.cnki.CN45-1356/P.2021.1.01]
[7]李宗飞,陈凯华,赵玉娟.卷积神经网络和传统算法的雷达面雨量计算效果对比研究[J].气象研究与应用,2021,42(04):89.[doi:10.19849/j.cnki.CN45-1356/P.2021.4.16]
Li zongfei,Chen Kaihua,Zhao Yujuan.A comparative study of convolution neural network and traditional algorithm in radar area rainfall calculation[J].Journal of Meteorological Research and Application,2021,42(01):89.[doi:10.19849/j.cnki.CN45-1356/P.2021.4.16]
[8]黄友菊,韦强,罗恒,等.基于SAR影像的广西东北地区2022年“龙舟水”洪涝智能监测[J].气象研究与应用,2023,44(01):94.[doi:10.19849/j.cnki.CN45-1356/P.2023.1.16]
Huang Youju,Wei Qiang,Luo Heng,et al.Intelligent monitoring of flooding of a dragon-boat precipitation process in northeast Guangxi in 2022 based on SAR images[J].Journal of Meteorological Research and Application,2023,44(01):94.[doi:10.19849/j.cnki.CN45-1356/P.2023.1.16]
[9]黄颖,陆虹,黄小燕,等.基于EOF和LSTM的广西月降水量预测模型研究[J].气象研究与应用,2023,44(02):20.[doi:10.19849/j.cnki.CN45-1356/P.2023.2.04]
Huang Ying,Lu Hong,Huang Xiaoyan,et al.Study on monthly precipitation prediction model in Guangxi based on EOF and LSTM[J].Journal of Meteorological Research and Application,2023,44(01):20.[doi:10.19849/j.cnki.CN45-1356/P.2023.2.04]
[10]范娇,曾小团,黄荣成,等.深度学习在降水预报中的研究和应用进展[J].气象研究与应用,2024,45(03):1.[doi:10.19849/j.cnki.CN45-1356/P.2024.3.01]
FAN Jiao,ZENG Xiaotuan,HUANG Rongcheng,et al.Research and application progress of deep learning in precipitation forecasting[J].Journal of Meteorological Research and Application,2024,45(01):1.[doi:10.19849/j.cnki.CN45-1356/P.2024.3.01]